Abstract

InGaN films with 33% and 60% indium contents were deposited by pulsed laser deposition (PLD) at a low growth temperature of 300 °C. The films were then annealed at 500-800 °C in the non-vacuum furnace for 15 min with an addition of N2 atmosphere. X-ray diffraction results indicate that the indium contents in these two films were raised to 41% and 63%, respectively, after annealing in furnace. In2O3 phase was formed on InGaN surface during the annealing process, which can be clearly observed by the measurements of auger electron spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. Due to the obstruction of indium out-diffusion by forming In2O3 on surface, it leads to the efficient increment in indium content of InGaN layer. In addition, the surface roughness was greatly improved by removing In2O3 with the etching treatment in HCl solution. Micro-photoluminescence measurement was performed to analyze the emission property of InGaN layer. For the as-grown InGaN with 33% indium content, the emission wavelength was gradually shifted from 552 to 618 nm with increasing the annealing temperature to 800 °C. It reveals the InGaN films have high potential in optoelectronic applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
    [CrossRef]
  2. T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, “Wide-gap semiconductor InGaN and InGaAln grown by MOVPE,” J. Electron. Mater.21(2), 157–163 (1992).
    [CrossRef]
  3. S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells,” J. Cryst. Growth195(1–4), 258–264 (1998).
  4. A. Kobayashi, J. Ohta, and H. Fujioka, “Low temperature epitaxial growth of In0.25Ga0.75N on lattice-matched ZnO by pulsed laser deposition,” J. Appl. Phys.99(12), 123513 (2006).
    [CrossRef]
  5. J. Ohta, H. Fujioka, and M. Oshima, “Room-temperature epitaxial growth of GaN on conductive substrates,” Appl. Phys. Lett.83(15), 3060–3062 (2003).
    [CrossRef]
  6. G. T. Thaler, D. D. Koleske, S. R. Lee, K. H. A. Bogart, and M. H. Crawford, “Thermal stability of thin InGaN films on GaN,” J. Cryst. Growth312(11), 1817–1822 (2010).
    [CrossRef]
  7. H. Hung, K. T. Lam, S. J. Chang, H. Kuan, C. H. Chen, and U. H. Liaw, “Effects of thermal annealing on In-induced metastable defects in InGaN films,” Mater. Sci. Semicond. Process.10(2–3), 112–116 (2007).
    [CrossRef]
  8. P. R. Chalker, D. Morrice, T. B. Joyce, T. C. Q. Noakes, P. Bailey, and L. Considine, “Indium segregation in MOCVD InGaN layers studied by medium energy ion scattering,” Diamond Related Materials9(3–6), 520–523 (2000).
    [CrossRef]
  9. H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett.94(20), 201907 (2009).
    [CrossRef]
  10. K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target,” Opt. Express20(14), 15149–15156 (2012).
    [CrossRef] [PubMed]
  11. Q. Guo, O. Kato, and A. Yoshida, “Thermal stability of indium nitride single crystal films,” J. Appl. Phys.73(11), 7969–7971 (1993).
    [CrossRef]
  12. K. P. Biju and M. K. Jain, “Annealing studies on InN thin films grown by modified activated reactive evaporation,” J. Cryst. Growth311(8), 2542–2548 (2009).
    [CrossRef]
  13. K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High thermal stability of high indium content InGaN films grown by pulsed laser deposition,” Opt. Express20(19), 21173–21180 (2012).
    [CrossRef] [PubMed]
  14. A. W. C. Lin, N. R. Armstrong, and T. Kuwana, “X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides,” Anal. Chem.49(8), 1228–1235 (1977).
    [CrossRef]
  15. H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth231(1–2), 68–74 (2001).
    [CrossRef]
  16. D. T. Clark, T. Fok, G. G. Roberts, and R. W. Sykes, “An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for langmuir film deposition,” Thin Solid Films70(2), 261–283 (1980).
    [CrossRef]
  17. V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
    [CrossRef]

2012 (2)

2010 (1)

G. T. Thaler, D. D. Koleske, S. R. Lee, K. H. A. Bogart, and M. H. Crawford, “Thermal stability of thin InGaN films on GaN,” J. Cryst. Growth312(11), 1817–1822 (2010).
[CrossRef]

2009 (2)

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett.94(20), 201907 (2009).
[CrossRef]

K. P. Biju and M. K. Jain, “Annealing studies on InN thin films grown by modified activated reactive evaporation,” J. Cryst. Growth311(8), 2542–2548 (2009).
[CrossRef]

2007 (1)

H. Hung, K. T. Lam, S. J. Chang, H. Kuan, C. H. Chen, and U. H. Liaw, “Effects of thermal annealing on In-induced metastable defects in InGaN films,” Mater. Sci. Semicond. Process.10(2–3), 112–116 (2007).
[CrossRef]

2006 (1)

A. Kobayashi, J. Ohta, and H. Fujioka, “Low temperature epitaxial growth of In0.25Ga0.75N on lattice-matched ZnO by pulsed laser deposition,” J. Appl. Phys.99(12), 123513 (2006).
[CrossRef]

2003 (2)

J. Ohta, H. Fujioka, and M. Oshima, “Room-temperature epitaxial growth of GaN on conductive substrates,” Appl. Phys. Lett.83(15), 3060–3062 (2003).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

2002 (1)

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

2001 (1)

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth231(1–2), 68–74 (2001).
[CrossRef]

2000 (1)

P. R. Chalker, D. Morrice, T. B. Joyce, T. C. Q. Noakes, P. Bailey, and L. Considine, “Indium segregation in MOCVD InGaN layers studied by medium energy ion scattering,” Diamond Related Materials9(3–6), 520–523 (2000).
[CrossRef]

1998 (1)

S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells,” J. Cryst. Growth195(1–4), 258–264 (1998).

1993 (1)

Q. Guo, O. Kato, and A. Yoshida, “Thermal stability of indium nitride single crystal films,” J. Appl. Phys.73(11), 7969–7971 (1993).
[CrossRef]

1992 (1)

T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, “Wide-gap semiconductor InGaN and InGaAln grown by MOVPE,” J. Electron. Mater.21(2), 157–163 (1992).
[CrossRef]

1980 (1)

D. T. Clark, T. Fok, G. G. Roberts, and R. W. Sykes, “An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for langmuir film deposition,” Thin Solid Films70(2), 261–283 (1980).
[CrossRef]

1977 (1)

A. W. C. Lin, N. R. Armstrong, and T. Kuwana, “X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides,” Anal. Chem.49(8), 1228–1235 (1977).
[CrossRef]

Aderhold, J.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

Armstrong, N. R.

A. W. C. Lin, N. R. Armstrong, and T. Kuwana, “X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides,” Anal. Chem.49(8), 1228–1235 (1977).
[CrossRef]

Bailey, P.

P. R. Chalker, D. Morrice, T. B. Joyce, T. C. Q. Noakes, P. Bailey, and L. Considine, “Indium segregation in MOCVD InGaN layers studied by medium energy ion scattering,” Diamond Related Materials9(3–6), 520–523 (2000).
[CrossRef]

Bechstedt, F.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Becker, H. W.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth231(1–2), 68–74 (2001).
[CrossRef]

Biju, K. P.

K. P. Biju and M. K. Jain, “Annealing studies on InN thin films grown by modified activated reactive evaporation,” J. Cryst. Growth311(8), 2542–2548 (2009).
[CrossRef]

Birkner, A.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth231(1–2), 68–74 (2001).
[CrossRef]

Bogart, K. H. A.

G. T. Thaler, D. D. Koleske, S. R. Lee, K. H. A. Bogart, and M. H. Crawford, “Thermal stability of thin InGaN films on GaN,” J. Cryst. Growth312(11), 1817–1822 (2010).
[CrossRef]

Chalker, P. R.

P. R. Chalker, D. Morrice, T. B. Joyce, T. C. Q. Noakes, P. Bailey, and L. Considine, “Indium segregation in MOCVD InGaN layers studied by medium energy ion scattering,” Diamond Related Materials9(3–6), 520–523 (2000).
[CrossRef]

Chang, S. J.

H. Hung, K. T. Lam, S. J. Chang, H. Kuan, C. H. Chen, and U. H. Liaw, “Effects of thermal annealing on In-induced metastable defects in InGaN films,” Mater. Sci. Semicond. Process.10(2–3), 112–116 (2007).
[CrossRef]

Chen, C. H.

H. Hung, K. T. Lam, S. J. Chang, H. Kuan, C. H. Chen, and U. H. Liaw, “Effects of thermal annealing on In-induced metastable defects in InGaN films,” Mater. Sci. Semicond. Process.10(2–3), 112–116 (2007).
[CrossRef]

Chen, Q. Y.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett.94(20), 201907 (2009).
[CrossRef]

Chichibu, S. F.

S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells,” J. Cryst. Growth195(1–4), 258–264 (1998).

Clark, D. T.

D. T. Clark, T. Fok, G. G. Roberts, and R. W. Sykes, “An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for langmuir film deposition,” Thin Solid Films70(2), 261–283 (1980).
[CrossRef]

Considine, L.

P. R. Chalker, D. Morrice, T. B. Joyce, T. C. Q. Noakes, P. Bailey, and L. Considine, “Indium segregation in MOCVD InGaN layers studied by medium energy ion scattering,” Diamond Related Materials9(3–6), 520–523 (2000).
[CrossRef]

Crawford, M. H.

G. T. Thaler, D. D. Koleske, S. R. Lee, K. H. A. Bogart, and M. H. Crawford, “Thermal stability of thin InGaN films on GaN,” J. Cryst. Growth312(11), 1817–1822 (2010).
[CrossRef]

Davydov, V. Y.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

DenBaars, S. P.

S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells,” J. Cryst. Growth195(1–4), 258–264 (1998).

Devi, A.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth231(1–2), 68–74 (2001).
[CrossRef]

Emtsev, V. V.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Fischer, R. A.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth231(1–2), 68–74 (2001).
[CrossRef]

Fok, T.

D. T. Clark, T. Fok, G. G. Roberts, and R. W. Sykes, “An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for langmuir film deposition,” Thin Solid Films70(2), 261–283 (1980).
[CrossRef]

Fujioka, H.

A. Kobayashi, J. Ohta, and H. Fujioka, “Low temperature epitaxial growth of In0.25Ga0.75N on lattice-matched ZnO by pulsed laser deposition,” J. Appl. Phys.99(12), 123513 (2006).
[CrossRef]

J. Ohta, H. Fujioka, and M. Oshima, “Room-temperature epitaxial growth of GaN on conductive substrates,” Appl. Phys. Lett.83(15), 3060–3062 (2003).
[CrossRef]

Furthmuller, J.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Graul, J.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Guo, Q.

Q. Guo, O. Kato, and A. Yoshida, “Thermal stability of indium nitride single crystal films,” J. Appl. Phys.73(11), 7969–7971 (1993).
[CrossRef]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Harima, H.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Hashimoto, A.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Hipler, F.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth231(1–2), 68–74 (2001).
[CrossRef]

Ho, C. Y.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett.94(20), 201907 (2009).
[CrossRef]

Ho, N. J.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett.94(20), 201907 (2009).
[CrossRef]

Horng, R. H.

Hu, E.

S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells,” J. Cryst. Growth195(1–4), 258–264 (1998).

Hung, H.

H. Hung, K. T. Lam, S. J. Chang, H. Kuan, C. H. Chen, and U. H. Liaw, “Effects of thermal annealing on In-induced metastable defects in InGaN films,” Mater. Sci. Semicond. Process.10(2–3), 112–116 (2007).
[CrossRef]

Ivanov, S. V.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Jain, M. K.

K. P. Biju and M. K. Jain, “Annealing studies on InN thin films grown by modified activated reactive evaporation,” J. Cryst. Growth311(8), 2542–2548 (2009).
[CrossRef]

Joyce, T. B.

P. R. Chalker, D. Morrice, T. B. Joyce, T. C. Q. Noakes, P. Bailey, and L. Considine, “Indium segregation in MOCVD InGaN layers studied by medium energy ion scattering,” Diamond Related Materials9(3–6), 520–523 (2000).
[CrossRef]

Kato, O.

Q. Guo, O. Kato, and A. Yoshida, “Thermal stability of indium nitride single crystal films,” J. Appl. Phys.73(11), 7969–7971 (1993).
[CrossRef]

Katsui, A.

T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, “Wide-gap semiconductor InGaN and InGaAln grown by MOVPE,” J. Electron. Mater.21(2), 157–163 (1992).
[CrossRef]

Keller, S.

S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells,” J. Cryst. Growth195(1–4), 258–264 (1998).

Klochikhin, A. A.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Kobayashi, A.

A. Kobayashi, J. Ohta, and H. Fujioka, “Low temperature epitaxial growth of In0.25Ga0.75N on lattice-matched ZnO by pulsed laser deposition,” J. Appl. Phys.99(12), 123513 (2006).
[CrossRef]

Koleske, D. D.

G. T. Thaler, D. D. Koleske, S. R. Lee, K. H. A. Bogart, and M. H. Crawford, “Thermal stability of thin InGaN films on GaN,” J. Cryst. Growth312(11), 1817–1822 (2010).
[CrossRef]

Kuan, H.

H. Hung, K. T. Lam, S. J. Chang, H. Kuan, C. H. Chen, and U. H. Liaw, “Effects of thermal annealing on In-induced metastable defects in InGaN films,” Mater. Sci. Semicond. Process.10(2–3), 112–116 (2007).
[CrossRef]

Kurtz, S.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

Kuwana, T.

A. W. C. Lin, N. R. Armstrong, and T. Kuwana, “X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides,” Anal. Chem.49(8), 1228–1235 (1977).
[CrossRef]

Lam, K. T.

H. Hung, K. T. Lam, S. J. Chang, H. Kuan, C. H. Chen, and U. H. Liaw, “Effects of thermal annealing on In-induced metastable defects in InGaN films,” Mater. Sci. Semicond. Process.10(2–3), 112–116 (2007).
[CrossRef]

Lee, S. R.

G. T. Thaler, D. D. Koleske, S. R. Lee, K. H. A. Bogart, and M. H. Crawford, “Thermal stability of thin InGaN films on GaN,” J. Cryst. Growth312(11), 1817–1822 (2010).
[CrossRef]

Liaw, U. H.

H. Hung, K. T. Lam, S. J. Chang, H. Kuan, C. H. Chen, and U. H. Liaw, “Effects of thermal annealing on In-induced metastable defects in InGaN films,” Mater. Sci. Semicond. Process.10(2–3), 112–116 (2007).
[CrossRef]

Lin, A. W. C.

A. W. C. Lin, N. R. Armstrong, and T. Kuwana, “X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides,” Anal. Chem.49(8), 1228–1235 (1977).
[CrossRef]

Lin, Y. T.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett.94(20), 201907 (2009).
[CrossRef]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

Maile, E.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth231(1–2), 68–74 (2001).
[CrossRef]

Matsuoka, T.

T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, “Wide-gap semiconductor InGaN and InGaAln grown by MOVPE,” J. Electron. Mater.21(2), 157–163 (1992).
[CrossRef]

Metzger, W. K.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

Minsky, M. S.

S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells,” J. Cryst. Growth195(1–4), 258–264 (1998).

Mishra, U. K.

S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells,” J. Cryst. Growth195(1–4), 258–264 (1998).

Morrice, D.

P. R. Chalker, D. Morrice, T. B. Joyce, T. C. Q. Noakes, P. Bailey, and L. Considine, “Indium segregation in MOCVD InGaN layers studied by medium energy ion scattering,” Diamond Related Materials9(3–6), 520–523 (2000).
[CrossRef]

Mudryi, A. V.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Noakes, T. C. Q.

P. R. Chalker, D. Morrice, T. B. Joyce, T. C. Q. Noakes, P. Bailey, and L. Considine, “Indium segregation in MOCVD InGaN layers studied by medium energy ion scattering,” Diamond Related Materials9(3–6), 520–523 (2000).
[CrossRef]

Norman, D. P.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett.94(20), 201907 (2009).
[CrossRef]

Ohta, J.

A. Kobayashi, J. Ohta, and H. Fujioka, “Low temperature epitaxial growth of In0.25Ga0.75N on lattice-matched ZnO by pulsed laser deposition,” J. Appl. Phys.99(12), 123513 (2006).
[CrossRef]

J. Ohta, H. Fujioka, and M. Oshima, “Room-temperature epitaxial growth of GaN on conductive substrates,” Appl. Phys. Lett.83(15), 3060–3062 (2003).
[CrossRef]

Oshima, M.

J. Ohta, H. Fujioka, and M. Oshima, “Room-temperature epitaxial growth of GaN on conductive substrates,” Appl. Phys. Lett.83(15), 3060–3062 (2003).
[CrossRef]

Parala, H.

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth231(1–2), 68–74 (2001).
[CrossRef]

Roberts, G. G.

D. T. Clark, T. Fok, G. G. Roberts, and R. W. Sykes, “An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for langmuir film deposition,” Thin Solid Films70(2), 261–283 (1980).
[CrossRef]

Sasaki, T.

T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, “Wide-gap semiconductor InGaN and InGaAln grown by MOVPE,” J. Electron. Mater.21(2), 157–163 (1992).
[CrossRef]

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

Seo, H. W.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett.94(20), 201907 (2009).
[CrossRef]

Shan, W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

Shen, K. C.

Sykes, R. W.

D. T. Clark, T. Fok, G. G. Roberts, and R. W. Sykes, “An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for langmuir film deposition,” Thin Solid Films70(2), 261–283 (1980).
[CrossRef]

Thaler, G. T.

G. T. Thaler, D. D. Koleske, S. R. Lee, K. H. A. Bogart, and M. H. Crawford, “Thermal stability of thin InGaN films on GaN,” J. Cryst. Growth312(11), 1817–1822 (2010).
[CrossRef]

Tu, L. W.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett.94(20), 201907 (2009).
[CrossRef]

Vekshin, V. V.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Walukiewicz, W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

Wang, T. Y.

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

Wuu, D. S.

Yamamoto, A.

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Yoshida, A.

Q. Guo, O. Kato, and A. Yoshida, “Thermal stability of indium nitride single crystal films,” J. Appl. Phys.73(11), 7969–7971 (1993).
[CrossRef]

Yoshimoto, N.

T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, “Wide-gap semiconductor InGaN and InGaAln grown by MOVPE,” J. Electron. Mater.21(2), 157–163 (1992).
[CrossRef]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

Yuan, L.

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett.94(20), 201907 (2009).
[CrossRef]

Anal. Chem. (1)

A. W. C. Lin, N. R. Armstrong, and T. Kuwana, “X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides,” Anal. Chem.49(8), 1228–1235 (1977).
[CrossRef]

Appl. Phys. Lett. (2)

J. Ohta, H. Fujioka, and M. Oshima, “Room-temperature epitaxial growth of GaN on conductive substrates,” Appl. Phys. Lett.83(15), 3060–3062 (2003).
[CrossRef]

H. W. Seo, L. W. Tu, Y. T. Lin, C. Y. Ho, Q. Y. Chen, L. Yuan, D. P. Norman, and N. J. Ho, “p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance,” Appl. Phys. Lett.94(20), 201907 (2009).
[CrossRef]

Diamond Related Materials (1)

P. R. Chalker, D. Morrice, T. B. Joyce, T. C. Q. Noakes, P. Bailey, and L. Considine, “Indium segregation in MOCVD InGaN layers studied by medium energy ion scattering,” Diamond Related Materials9(3–6), 520–523 (2000).
[CrossRef]

J. Appl. Phys. (3)

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys.94(10), 6477–6482 (2003).
[CrossRef]

A. Kobayashi, J. Ohta, and H. Fujioka, “Low temperature epitaxial growth of In0.25Ga0.75N on lattice-matched ZnO by pulsed laser deposition,” J. Appl. Phys.99(12), 123513 (2006).
[CrossRef]

Q. Guo, O. Kato, and A. Yoshida, “Thermal stability of indium nitride single crystal films,” J. Appl. Phys.73(11), 7969–7971 (1993).
[CrossRef]

J. Cryst. Growth (4)

K. P. Biju and M. K. Jain, “Annealing studies on InN thin films grown by modified activated reactive evaporation,” J. Cryst. Growth311(8), 2542–2548 (2009).
[CrossRef]

H. Parala, A. Devi, F. Hipler, E. Maile, A. Birkner, H. W. Becker, and R. A. Fischer, “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth231(1–2), 68–74 (2001).
[CrossRef]

S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, and S. P. DenBaars, “Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells,” J. Cryst. Growth195(1–4), 258–264 (1998).

G. T. Thaler, D. D. Koleske, S. R. Lee, K. H. A. Bogart, and M. H. Crawford, “Thermal stability of thin InGaN films on GaN,” J. Cryst. Growth312(11), 1817–1822 (2010).
[CrossRef]

J. Electron. Mater. (1)

T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, “Wide-gap semiconductor InGaN and InGaAln grown by MOVPE,” J. Electron. Mater.21(2), 157–163 (1992).
[CrossRef]

Mater. Sci. Semicond. Process. (1)

H. Hung, K. T. Lam, S. J. Chang, H. Kuan, C. H. Chen, and U. H. Liaw, “Effects of thermal annealing on In-induced metastable defects in InGaN films,” Mater. Sci. Semicond. Process.10(2–3), 112–116 (2007).
[CrossRef]

Opt. Express (2)

Phys. Status Solidi, B Basic Res. (1)

V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, “Band Gap of InN and In-Rich InxGa1-xN alloys (0.36 < x < 1),” Phys. Status Solidi, B Basic Res.230(2), R4–R6 (2002).
[CrossRef]

Thin Solid Films (1)

D. T. Clark, T. Fok, G. G. Roberts, and R. W. Sykes, “An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for langmuir film deposition,” Thin Solid Films70(2), 261–283 (1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

XRD patterns of samples (a) A0-A800 and (b) B0-B800. AES depth profile analyses of samples (c) A0, (d) B0, (e) A700 and (f) B700.

Fig. 2
Fig. 2

Cross-sectional TEM images of (a) A600 and (b) B600. High resolution images of (c) A600 and (d) B600 were taken at the interface between InGaN and oxide layers.

Fig. 3
Fig. 3

XPS spectra of (a) O1s and (b) In3d for the samples of A0-A800 at a sputtering depth of 20 nm.

Fig. 4
Fig. 4

(a) XRD patterns, (b) Indium contents and (c) RMS roughnesses of A0-A800 before and after etching in HCl solution.

Fig. 5
Fig. 5

μ-PL spectra of A0 and A500-A800 etched in HCl solution.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E(x)=EGaN-x(EGaN-EInN)-bx(1-x),

Metrics