Abstract

Optical-resolution photoacoustic microscopy (OR-PAM) is becoming a vital tool for studying the microcirculation system in vivo. By increasing the numerical aperture of optical focusing, the lateral resolution of OR-PAM can be improved; however, the depth of focus and thus the imaging range will be sacrificed correspondingly. In this work, we report our development of blind-deconvolution optical-resolution photoacoustic microscopy (BD-PAM) that can provide a lateral resolution ~2-fold finer than that of conventional OR-PAM (3.04 vs. 5.78μm), without physically increasing the system’s numerical aperture. The improvement achieved with BD-PAM is demonstrated by imaging graphene nanoparticles and the microvasculature of mice ears in vivo. Our results suggest that BD-PAM may become a valuable tool for many biomedical applications that require both fine spatial resolution and extended depth of focus.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
    [CrossRef] [PubMed]
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  3. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
    [CrossRef] [PubMed]
  4. J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17(5), 056016 (2012).
    [CrossRef] [PubMed]
  5. S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
    [CrossRef] [PubMed]
  6. J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
    [CrossRef] [PubMed]
  7. Z. Xie, W. Roberts, P. Carson, X. Liu, C. Tao, and X. Wang, “Evaluation of bladder microvasculature with high-resolution photoacoustic imaging,” Opt. Lett.36(24), 4815–4817 (2011).
    [CrossRef] [PubMed]
  8. T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt.17(6), 061209 (2012).
    [CrossRef] [PubMed]
  9. K. Jansen, A. F. van der Steen, H. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett.36(5), 597–599 (2011).
    [CrossRef] [PubMed]
  10. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express16(5), 3362–3367 (2008).
    [CrossRef] [PubMed]
  11. S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett.35(1), 1–3 (2010).
    [CrossRef] [PubMed]
  12. A. de la Zerda, Y. M. Paulus, R. Teed, S. Bodapati, Y. Dollberg, B. T. Khuri-Yakub, M. S. Blumenkranz, D. M. Moshfeghi, and S. S. Gambhir, “Photoacoustic ocular imaging,” Opt. Lett.35(3), 270–272 (2010).
    [CrossRef] [PubMed]
  13. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
    [CrossRef] [PubMed]
  14. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
    [CrossRef] [PubMed]
  15. J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt.48(10), D299–D306 (2009).
    [CrossRef] [PubMed]
  16. J. Meng, L. V. Wang, L. Ying, D. Liang, and L. Song, “Compressed-sensing photoacoustic computed tomography in vivo with partially known support,” Opt. Express20(15), 16510–16523 (2012).
    [CrossRef]
  17. J. Meng, L. V. Wang, D. Liang, and L. Song, “In vivo optical-resolution photoacoustic computed tomography with compressed sensing,” Opt. Lett.37(22), 4573–4575 (2012).
    [CrossRef] [PubMed]
  18. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
    [CrossRef] [PubMed]
  19. L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
    [CrossRef] [PubMed]
  20. R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express3(7), 1724–1731 (2012).
    [CrossRef] [PubMed]
  21. S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
    [CrossRef] [PubMed]
  22. C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
    [CrossRef] [PubMed]
  23. D. A. Agard and J. W. Sedat, “Three-dimensional architecture of a polytene nucleus,” Nature302(5910), 676–681 (1983).
    [CrossRef] [PubMed]
  24. J.-B. Sibarita, “Deconvolution Microscopy,” Adv. Biochem. Eng. Biotechnol.95, 201–243 (2005).
    [CrossRef] [PubMed]
  25. M. Laasmaa, M. Vendelin, and P. Peterson, “Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images,” J. Microsc.243(2), 124–140 (2011).
    [CrossRef] [PubMed]
  26. X. Lv, “Modified robust anisotropic diffusion denoising technique with regularized Richardson-Lucy deconvolution for two-photon microscopic images,” Opt. Eng.47(4), 047004 (2008).
    [CrossRef]
  27. C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt.17(7), 076003 (2012).
    [CrossRef] [PubMed]
  28. G. Liu, S. Yousefi, Z. Zhi, and R. K. Wang, “Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach,” Opt. Express19(19), 18135–18148 (2011).
    [CrossRef] [PubMed]
  29. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE. Trans. Img. Proc14(9), 1254–1264 (2005).
    [CrossRef]
  30. C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE. Photonics. J.2(1), 57–66 (2010).
    [CrossRef]
  31. Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
    [CrossRef] [PubMed]
  32. T. Jetzfellner and V. Ntziachristos, “Performance of Blind Deconvolution in Optoacoustic Tomography,” JIOHS04(04), 385–393 (2011).
  33. L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett.102(5), 053704 (2013).
    [CrossRef]
  34. L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express20(2), 1237–1246 (2012).
    [CrossRef] [PubMed]
  35. C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
    [CrossRef] [PubMed]
  36. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am.62(1), 55–59 (1972).
    [CrossRef]
  37. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J.79(6), 745–754 (1974).
    [CrossRef]
  38. D. A. Fish, A. M. Brinicombe, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson-Lucy algorithm,” J. Opt. Soc. Am. A12(1), 58–65 (1995).
    [CrossRef]
  39. V. Loyev and Y. Yitzhaky, “Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images,” Appl. Opt.45(11), 2444–2452 (2006).
    [CrossRef] [PubMed]
  40. D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt.36(8), 1766–1775 (1997).
    [CrossRef] [PubMed]

2013 (1)

L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett.102(5), 053704 (2013).
[CrossRef]

2012 (10)

L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express20(2), 1237–1246 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt.17(7), 076003 (2012).
[CrossRef] [PubMed]

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express3(7), 1724–1731 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17(5), 056016 (2012).
[CrossRef] [PubMed]

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt.17(6), 061209 (2012).
[CrossRef] [PubMed]

J. Meng, L. V. Wang, L. Ying, D. Liang, and L. Song, “Compressed-sensing photoacoustic computed tomography in vivo with partially known support,” Opt. Express20(15), 16510–16523 (2012).
[CrossRef]

J. Meng, L. V. Wang, D. Liang, and L. Song, “In vivo optical-resolution photoacoustic computed tomography with compressed sensing,” Opt. Lett.37(22), 4573–4575 (2012).
[CrossRef] [PubMed]

2011 (8)

K. Jansen, A. F. van der Steen, H. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett.36(5), 597–599 (2011).
[CrossRef] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

Z. Xie, W. Roberts, P. Carson, X. Liu, C. Tao, and X. Wang, “Evaluation of bladder microvasculature with high-resolution photoacoustic imaging,” Opt. Lett.36(24), 4815–4817 (2011).
[CrossRef] [PubMed]

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

M. Laasmaa, M. Vendelin, and P. Peterson, “Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images,” J. Microsc.243(2), 124–140 (2011).
[CrossRef] [PubMed]

G. Liu, S. Yousefi, Z. Zhi, and R. K. Wang, “Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach,” Opt. Express19(19), 18135–18148 (2011).
[CrossRef] [PubMed]

T. Jetzfellner and V. Ntziachristos, “Performance of Blind Deconvolution in Optoacoustic Tomography,” JIOHS04(04), 385–393 (2011).

2010 (5)

2009 (2)

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt.48(10), D299–D306 (2009).
[CrossRef] [PubMed]

2008 (3)

2006 (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

V. Loyev and Y. Yitzhaky, “Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images,” Appl. Opt.45(11), 2444–2452 (2006).
[CrossRef] [PubMed]

2005 (2)

J.-B. Sibarita, “Deconvolution Microscopy,” Adv. Biochem. Eng. Biotechnol.95, 201–243 (2005).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE. Trans. Img. Proc14(9), 1254–1264 (2005).
[CrossRef]

2004 (1)

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

2003 (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

1997 (1)

1995 (1)

1983 (1)

D. A. Agard and J. W. Sedat, “Three-dimensional architecture of a polytene nucleus,” Nature302(5910), 676–681 (1983).
[CrossRef] [PubMed]

1974 (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J.79(6), 745–754 (1974).
[CrossRef]

1972 (1)

Agard, D. A.

D. A. Agard and J. W. Sedat, “Three-dimensional architecture of a polytene nucleus,” Nature302(5910), 676–681 (1983).
[CrossRef] [PubMed]

Allen, T. J.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt.17(6), 061209 (2012).
[CrossRef] [PubMed]

Amirian, J. H.

Andrews, M.

Arbeit, J. M.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

Beard, P.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17(5), 056016 (2012).
[CrossRef] [PubMed]

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt.48(10), D299–D306 (2009).
[CrossRef] [PubMed]

Beard, P. C.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt.17(6), 061209 (2012).
[CrossRef] [PubMed]

Biggs, D. S. C.

Blumenkranz, M. S.

Bodapati, S.

Boppart, S. A.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE. Trans. Img. Proc14(9), 1254–1264 (2005).
[CrossRef]

Brinicombe, A. M.

Carson, P.

Chen, Q.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Chen, R.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Cox, B.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17(5), 056016 (2012).
[CrossRef] [PubMed]

de la Zerda, A.

Dhillon, A. P.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt.17(6), 061209 (2012).
[CrossRef] [PubMed]

Dollberg, Y.

Emelianov, S. Y.

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Fawzi, A.

Fish, D. A.

Gainer, C. F.

C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt.17(7), 076003 (2012).
[CrossRef] [PubMed]

Gambhir, S. S.

Hall, A.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt.17(6), 061209 (2012).
[CrossRef] [PubMed]

Hu, J.

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
[CrossRef] [PubMed]

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett.35(1), 1–3 (2010).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

Jansen, K.

Jetzfellner, T.

T. Jetzfellner and V. Ntziachristos, “Performance of Blind Deconvolution in Optoacoustic Tomography,” JIOHS04(04), 385–393 (2011).

Ji, X.

L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett.102(5), 053704 (2013).
[CrossRef]

L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express20(2), 1237–1246 (2012).
[CrossRef] [PubMed]

Jiang, M.

Jiao, S.

Johnson, P.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17(5), 056016 (2012).
[CrossRef] [PubMed]

Kamalabadi, F.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE. Trans. Img. Proc14(9), 1254–1264 (2005).
[CrossRef]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Khuri-Yakub, B. T.

Kovalski, J.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Laasmaa, M.

M. Laasmaa, M. Vendelin, and P. Peterson, “Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images,” J. Microsc.243(2), 124–140 (2011).
[CrossRef] [PubMed]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Laufer, J.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17(5), 056016 (2012).
[CrossRef] [PubMed]

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt.48(10), D299–D306 (2009).
[CrossRef] [PubMed]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Li, C.

C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE. Photonics. J.2(1), 57–66 (2010).
[CrossRef]

Liang, D.

Litovsky, S. H.

Liu, G.

Liu, X.

Loyev, V.

Lucy, L. B.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J.79(6), 745–754 (1974).
[CrossRef]

Lv, X.

X. Lv, “Modified robust anisotropic diffusion denoising technique with regularized Richardson-Lucy deconvolution for two-photon microscopic images,” Opt. Eng.47(4), 047004 (2008).
[CrossRef]

Ma, R.

Marks, D. L.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE. Trans. Img. Proc14(9), 1254–1264 (2005).
[CrossRef]

Maslov, K.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett.35(1), 1–3 (2010).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Maslov, K. I.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Meng, J.

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Moshfeghi, D. M.

Ntziachristos, V.

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express3(7), 1724–1731 (2012).
[CrossRef] [PubMed]

T. Jetzfellner and V. Ntziachristos, “Performance of Blind Deconvolution in Optoacoustic Tomography,” JIOHS04(04), 385–393 (2011).

Oladipupo, S.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

Oosterhuis, J. W.

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

Owen, J. S.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt.17(6), 061209 (2012).
[CrossRef] [PubMed]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Paulus, Y. M.

Pedley, B.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17(5), 056016 (2012).
[CrossRef] [PubMed]

Peterson, P.

M. Laasmaa, M. Vendelin, and P. Peterson, “Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images,” J. Microsc.243(2), 124–140 (2011).
[CrossRef] [PubMed]

Pike, E. R.

Puliafito, C. A.

Raivich, G.

Ralston, T. S.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE. Trans. Img. Proc14(9), 1254–1264 (2005).
[CrossRef]

Rao, B.

Razansky, D.

Richardson, W. H.

Roberts, W.

Romanowski, M.

C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt.17(7), 076003 (2012).
[CrossRef] [PubMed]

Santeford, A.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

Sedat, J. W.

D. A. Agard and J. W. Sedat, “Three-dimensional architecture of a polytene nucleus,” Nature302(5910), 676–681 (1983).
[CrossRef] [PubMed]

Sethuraman, S.

Shoham, S.

Shohet, R.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

Shung, K. K.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

Sibarita, J.-B.

J.-B. Sibarita, “Deconvolution Microscopy,” Adv. Biochem. Eng. Biotechnol.95, 201–243 (2005).
[CrossRef] [PubMed]

Smalling, R. W.

Sohn, R. E.

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

Song, L.

Söntges, S.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Tao, C.

Teed, R.

Treeby, B.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17(5), 056016 (2012).
[CrossRef] [PubMed]

Utzinger, U.

C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt.17(7), 076003 (2012).
[CrossRef] [PubMed]

van Beusekom, H. M.

van der Steen, A. F.

van Soest, G.

Vendelin, M.

M. Laasmaa, M. Vendelin, and P. Peterson, “Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images,” J. Microsc.243(2), 124–140 (2011).
[CrossRef] [PubMed]

Walker, J. G.

Wang, L. V.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

J. Meng, L. V. Wang, D. Liang, and L. Song, “In vivo optical-resolution photoacoustic computed tomography with compressed sensing,” Opt. Lett.37(22), 4573–4575 (2012).
[CrossRef] [PubMed]

J. Meng, L. V. Wang, L. Ying, D. Liang, and L. Song, “Compressed-sensing photoacoustic computed tomography in vivo with partially known support,” Opt. Express20(15), 16510–16523 (2012).
[CrossRef]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
[CrossRef] [PubMed]

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett.35(1), 1–3 (2010).
[CrossRef] [PubMed]

C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE. Photonics. J.2(1), 57–66 (2010).
[CrossRef]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, R. K.

Wang, X.

Z. Xie, W. Roberts, P. Carson, X. Liu, C. Tao, and X. Wang, “Evaluation of bladder microvasculature with high-resolution photoacoustic imaging,” Opt. Lett.36(24), 4815–4817 (2011).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Xia, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Xie, Z.

Xing, D.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Yang, D.

L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett.102(5), 053704 (2013).
[CrossRef]

L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express20(2), 1237–1246 (2012).
[CrossRef] [PubMed]

Yao, J.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

Ying, L.

Yitzhaky, Y.

Yousefi, S.

Zeng, L.

L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett.102(5), 053704 (2013).
[CrossRef]

L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express20(2), 1237–1246 (2012).
[CrossRef] [PubMed]

Zeng, Y.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Zhang, C.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE. Photonics. J.2(1), 57–66 (2010).
[CrossRef]

Zhang, E.

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17(5), 056016 (2012).
[CrossRef] [PubMed]

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt.48(10), D299–D306 (2009).
[CrossRef] [PubMed]

Zhang, H. F.

Zhang, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

Zhi, Z.

Zhou, Q.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

Adv. Biochem. Eng. Biotechnol. (1)

J.-B. Sibarita, “Deconvolution Microscopy,” Adv. Biochem. Eng. Biotechnol.95, 201–243 (2005).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

L. Zeng, G. Liu, D. Yang, and X. Ji, “Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation,” Appl. Phys. Lett.102(5), 053704 (2013).
[CrossRef]

Astron. J. (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J.79(6), 745–754 (1974).
[CrossRef]

Biomed. Opt. Express (1)

IEEE. Photonics. J. (1)

C. Zhang, C. Li, and L. V. Wang, “Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation,” IEEE. Photonics. J.2(1), 57–66 (2010).
[CrossRef]

IEEE. Trans. Img. Proc (1)

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE. Trans. Img. Proc14(9), 1254–1264 (2005).
[CrossRef]

J. Biomed. Opt. (8)

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt.17(11), 116016 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

C. F. Gainer, U. Utzinger, and M. Romanowski, “Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution,” J. Biomed. Opt.17(7), 076003 (2012).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009).
[CrossRef] [PubMed]

J. Laufer, P. Johnson, E. Zhang, B. Treeby, B. Cox, B. Pedley, and P. Beard, “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” J. Biomed. Opt.17(5), 056016 (2012).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
[CrossRef] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt.17(6), 061209 (2012).
[CrossRef] [PubMed]

J. Microsc. (1)

M. Laasmaa, M. Vendelin, and P. Peterson, “Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images,” J. Microsc.243(2), 124–140 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

JIOHS (1)

T. Jetzfellner and V. Ntziachristos, “Performance of Blind Deconvolution in Optoacoustic Tomography,” JIOHS04(04), 385–393 (2011).

Nat. Biotechnol. (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003).
[CrossRef] [PubMed]

Nature (1)

D. A. Agard and J. W. Sedat, “Three-dimensional architecture of a polytene nucleus,” Nature302(5910), 676–681 (1983).
[CrossRef] [PubMed]

Opt. Eng. (1)

X. Lv, “Modified robust anisotropic diffusion denoising technique with regularized Richardson-Lucy deconvolution for two-photon microscopic images,” Opt. Eng.47(4), 047004 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Phys. Med. Biol. (1)

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol.49(14), 3117–3124 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Oladipupo, S. Hu, J. Kovalski, J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, “VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13264–13269 (2011).
[CrossRef] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the OR-PAM system. AP, aperture; CL, convex lens; FC, fiber coupler; SMF, single mode fiber; Obj, objective; RM, reflection mirror; UST, ultrasonic transducer; AL, acoustic lens; SO, silicone oil; EA, electrical amplifier; DAQ, data acquisition; PC, personal computer.

Fig. 2
Fig. 2

Measurement of the line spread function (LSF) using the edge of a sharp metallic blade. Blue scattered asterisk: original photoacoustic signal; green dash line: edge spread function (ESF); red solid line: the first-order derivative of the ESF, representing the LSF along the scanning direction.

Fig. 3
Fig. 3

Imaging of a single graphene nanoparticle for lateral-resolution quantification. (a) OR-PAM image; (b) BD-PAM image; (c) Photoacoustic amplitude profiles and their corresponding Gaussian fits (Blue: OR-PAM; Red: BD-PAM) along the yellow dash lines; (d) Deconvolved nanoparticle FWHMs and recovered PSFs under different initial PSF guesses.

Fig. 4
Fig. 4

OR-PAM and BD-PAM of a mouse (Mouse 1) ear in vivo. (a) Original OR-PAM image of the microvasculature in the ear; (b) Enlarged OR-PAM sub-image corresponding to the blue dash box in (a); (c) Deconvolved BD-PAM image corresponding to (b).

Fig. 5
Fig. 5

Representative OR-PAM and BD-PAM axial section images of Mouse 1. (a) Area A in Fig. 4(b). Upper row: original OR-PAM images; lower row: BD-PAM images. (b) Area B in Fig. 4(b). Upper row: original OR-PAM images; lower row: BD-PAM images. (c) AMSE (left axis, solid line) and AER (right axis, dash line) of area A as a function of the number of iterations; (d) AMSE and AER of area B as a function of the number of iterations.

Fig. 6
Fig. 6

BD-PAM in vivo (Mouse 1) with initial PSF guesses of different FWHMs. (a) Original OR-PAM image of the 30th axial section corresponding to area B in Fig. 4(b); (b) – (d) Corresponding BD-PAM images with the initially guessed PSF of a FWHM of 10μm, 15μm, and 20μm, respectively.

Fig. 7
Fig. 7

Comparison of in vivo OR-PAM and BD-PAM images of Mouse 2. (a) The original OR-PAM image; (b) BD-PAM image; (c) OR-PAM (upper) and BD-PAM (lower) images of a pair of closely localized microvessels as labeled by arrow A in (a); (d) Cross-sectional profiles corresponding to the white dash lines in (c).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Resolution=0.51 λ NA ,
g(x,y)=h(x,y)o(x,y)+n(x,y),
o i+1 '(x,y)=[ g(x,y) h(x,y) o i '(x,y) *h(x,y) ] o i '(x,y),
h k '(x,y)=[ g(x,y) h k1 '(x,y) o k1 '(x,y) * o k1 '(x,y) ] h k1 '(x,y) o k '(x,y)=[ g(x,y) o k1 '(x,y) h k '(x,y) * h k '(x,y) ] o k1 '(x,y),
AMSE= x y [ o k '(x,y) o k1 '(x,y)] 2 x y o k1 ' (x,y) 2 ;
AER= x y [ o k '(x,y)* h k '(x,y)g(x,y)] 2 x y g (x,y) 2 .

Metrics