Abstract

A new kind of plenoptic imaging system based on Laser Optical Feedback Imaging (LOFI) is presented and is compared to another previously existing device based on microlens array. Improved photometric performances, resolution and depth of field are obtained at the price of a slow point by point scanning. Main properties of plenoptic microscopes such as numerical refocusing on any curved surface or aberrations compensation are both theoretically and experimentally demonstrated with a LOFI-based device.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “Epreuves réversibles. Photographies intégrales,” Comptes Rendus De l'Académie Des Sciences De Paris146, 446–451 (1908).
  2. R. Ng, Digital light field photography,” Ph.D. Thesis, University of Standford (2006), http://www.lytro.com/renng-thesis.pdf .
  3. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc.235(2), 144–162 (2009), http://graphics.stanford.edu/papers/lfillumination/levoy-lfillumination-jmicr09-lores.pdf .
    [CrossRef] [PubMed]
  4. W. Glastre, O. Jacquin, O. Hugon, H. Guillet de Chatellus, and E. Lacot, “Synthetic aperture laser optical feedback imaging using a translational scanning with galvanometric mirrors,” J. Opt. Soc. Am. A29(8), 1639–1647 (2012).
    [CrossRef] [PubMed]
  5. E. Lacot, O. Jacquin, G. Roussely, O. Hugon, and H. Guillet de Chatellus, “Comparative study of autodyne and heterodyne laser interferometry for imaging,” J. Opt. Soc. Am. A27(11), 2450–2458 (2010).
    [CrossRef] [PubMed]
  6. W. Glastre, O. Jacquin, O. Hugon, H. Guillet de Chatellus, and E. Lacot, “Deep and optically resolved imaging through scattering media by space-reversed propagation,” Opt. Lett.37(23), 4823–4825 (2012).
    [CrossRef] [PubMed]
  7. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008).
    [CrossRef] [PubMed]
  8. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express15(26), 18209–18219 (2007).
    [CrossRef] [PubMed]
  9. A. Facomprez, E. Beaurepaire, and D. Débarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express20(3), 2598–2612 (2012).
    [CrossRef] [PubMed]
  10. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express14(13), 5895–5908 (2006).
    [CrossRef] [PubMed]
  11. CombineZP (2010), available at http://hadleyweb.pwp.blueyonder.co.uk/CZP/News.htm .
  12. Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt.56(11), 1304–1308 (2009), http://www.tandfonline.com/doi/abs/10.1080/09500340903082689 .
    [CrossRef]
  13. W. Glastre, O. Jacquin, O. Hugon, H. Guillet de Chatellus, and E. Lacot, “Limitations of synthetic aperture laser optical feedback imaging,” J. Opt. Soc. Am. A29(11), 2247–2255 (2012).
    [CrossRef] [PubMed]

2012 (4)

2010 (1)

2009 (2)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc.235(2), 144–162 (2009), http://graphics.stanford.edu/papers/lfillumination/levoy-lfillumination-jmicr09-lores.pdf .
[CrossRef] [PubMed]

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt.56(11), 1304–1308 (2009), http://www.tandfonline.com/doi/abs/10.1080/09500340903082689 .
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

1908 (1)

G. Lippmann, “Epreuves réversibles. Photographies intégrales,” Comptes Rendus De l'Académie Des Sciences De Paris146, 446–451 (1908).

Beaurepaire, E.

Callens, N.

Cense, B.

Choi, S. S.

Débarre, D.

Ding, S.

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt.56(11), 1304–1308 (2009), http://www.tandfonline.com/doi/abs/10.1080/09500340903082689 .
[CrossRef]

Dubois, F.

Evans, C. L.

Facomprez, A.

Freudiger, C. W.

Girkin, J. M.

Glastre, W.

Guillet de Chatellus, H.

Hugon, O.

Jacquin, O.

Lacot, E.

Levoy, M.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc.235(2), 144–162 (2009), http://graphics.stanford.edu/papers/lfillumination/levoy-lfillumination-jmicr09-lores.pdf .
[CrossRef] [PubMed]

Lippmann, G.

G. Lippmann, “Epreuves réversibles. Photographies intégrales,” Comptes Rendus De l'Académie Des Sciences De Paris146, 446–451 (1908).

Lv, Q.

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt.56(11), 1304–1308 (2009), http://www.tandfonline.com/doi/abs/10.1080/09500340903082689 .
[CrossRef]

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc.235(2), 144–162 (2009), http://graphics.stanford.edu/papers/lfillumination/levoy-lfillumination-jmicr09-lores.pdf .
[CrossRef] [PubMed]

Miller, D. T.

Poland, S. P.

Roussely, G.

Schockaert, C.

Wang, X.

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt.56(11), 1304–1308 (2009), http://www.tandfonline.com/doi/abs/10.1080/09500340903082689 .
[CrossRef]

Werner, J. S.

Wright, A. J.

Xie, X. S.

Yourassowsky, C.

Zawadzki, R. J.

Zhai, Z.

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt.56(11), 1304–1308 (2009), http://www.tandfonline.com/doi/abs/10.1080/09500340903082689 .
[CrossRef]

Zhang, Y.

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc.235(2), 144–162 (2009), http://graphics.stanford.edu/papers/lfillumination/levoy-lfillumination-jmicr09-lores.pdf .
[CrossRef] [PubMed]

Zhong, Y.

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt.56(11), 1304–1308 (2009), http://www.tandfonline.com/doi/abs/10.1080/09500340903082689 .
[CrossRef]

Comptes Rendus De l'Académie Des Sciences De Paris (1)

G. Lippmann, “Epreuves réversibles. Photographies intégrales,” Comptes Rendus De l'Académie Des Sciences De Paris146, 446–451 (1908).

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc.235(2), 144–162 (2009), http://graphics.stanford.edu/papers/lfillumination/levoy-lfillumination-jmicr09-lores.pdf .
[CrossRef] [PubMed]

J. Mod. Opt. (1)

Z. Zhai, S. Ding, Q. Lv, X. Wang, and Y. Zhong, “Extended depth of field through an axicon,” J. Mod. Opt.56(11), 1304–1308 (2009), http://www.tandfonline.com/doi/abs/10.1080/09500340903082689 .
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Express (4)

Opt. Lett. (1)

Other (2)

CombineZP (2010), available at http://hadleyweb.pwp.blueyonder.co.uk/CZP/News.htm .

R. Ng, Digital light field photography,” Ph.D. Thesis, University of Standford (2006), http://www.lytro.com/renng-thesis.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the synthetic aperture LOFI-based imaging system. The laser is a 10 mW cw Nd:YVO4 microchip collimated by lens L1. A beam splitter sends 10% output power on a photodiode connected to a lock-in amplifier which gives access to the amplitude and phase of the signal. The frequency shifter is made of two acousto-optic modulators which diffract respectively in orders 1 and −1 and give a round trip total frequency shift of Fe = 3 MHz. x-y plane is scanned by galvanometric mirrors MX (scan in the x direction) and MY (scan in the y direction) conjugated by a telescope made by two identical lenses L3. f3 is the focal lengths of L3. αX and αY are the angular positions of MX and MY. L4 is the objective lens, f4 is its focal distance and r is the final waist of the laser after L4.

Fig. 2
Fig. 2

(a) Conventional and (b) Plenoptic imaging setup based on microlens array.

Fig. 3
Fig. 3

Images of 40 μm diameter silica beads. Observation (a) with classical bright field microscope; (b), (c), (e), (f) with LOFI-based microscope. Image (b) is a raw defocused image (L = 300 μm resulting in a spot size of 100 μm in the target plane) with highly aberrant lens (NA = 0.25). From (b), image (c) is obtained after numerical refocusing and (d) with both refocusing and numerical aberration compensation (expected resolution of r / √2 ≈1 μm). On (e) comparison with a numerically refocused image acquired with an aberration-free commercial objective (NA = 0.15, r / √2 ≈1.4 μm). (f) is the PSF used for filtering which reflects the aberrations which are compensated. Images (b)-(f) have a size of 256*256 pixels. Images from Figs. 3(a), 3(b)-(d) and 3(e) have not been acquired on the same zone of the field: this explains why no correlations on the placement of beads can be observed. Color map of images (b) to (f) have no physical significance and thus are not displayed; false color are automatically scaled between the minimum and the maximum of each image’s amplitude.

Fig. 4
Fig. 4

Demonstration of numerical refocusing on a curved surface. Images size is 512*512 pixels. Target is composed of a curved flexible film with silica bead glued on it (identical to Fig. 2(a). (a) Raw defocused image (250 μm < L < 1000 μm depending on the field). (b) Image after numerical refocusing over a distance 750 μm (on a plane). (c) Calculated surface of refocusing and (d) image after refocusing on this curved plane.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

h R (L,x,y)= ( exp( x 2 + y 2 ( λL πr ) 2 )exp(j2π x 2 + y 2 2Lλ ) ) 2
H R (L,υ,μ)exp( υ 2 + μ 2 ( 2 πr ) 2 )exp(j πLλ( υ 2 + μ 2 ) 2 )
H filt (L,υ,μ)=exp( j πLλ( υ 2 + μ 2 ) 2 )
| h SA (x,y) |=| T F 1 ( H R (L,υ,μ) H filt (L,υ,μ) ) |=exp( x 2 + y 2 ( r 2 ) 2 )
H R ' (L,υ,μ)= H R (L,υ,μ) H aber (υ,μ)
H filt ' (L,υ,μ)= H filt (L,υ,μ) H aber 1 (υ,μ)
H aber (ρ,φ)= H astig (A,ρ,φ) H coma (B,ρ,φ) H astig (A,ρ,φ)=exp( jA ρ 2 cos( 2(φ φ 0 ) ) ) H coma (B,ρ,φ)=exp( jB ρ 3 cos( φ φ 0 ) )
s SA (x,y)= s R (x,y)* h filt (L,x,y)
s SA (x,y)= S s R ( x 0 , y 0 ) h filt ( L(x,y), x 0 x, y 0 y )d x 0 d y 0

Metrics