Abstract

All-optical radio frequency conversion is proposed by directly modulated optically injection-locked vertical-cavity surface-emitting lasers. The enhancement effect of second order products of RF signals by OIL technique is analyzed based on reflection-mode OIL model. Simulation results show that high injection ratio and large wavelength detuning of OIL condition lead to a high RF conversion gain. Compared with free running condition, more than 20 dB RF conversion gain enhancement is achieved in the simulation. The experimental results of the RF conversion gain improvement ( + 18 dB) by OIL show excellent agreement with our simulation results. The spurious free dynamic range improvement ( + 15 dB) of conversion signals by OIL is also experimentally demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain and X. Zhao, “Ultra-high speed VCSEL modulation by injection locking,” in Optical Fiber Telecommunication V A: Components and Subsystems, I. P. Kaminow, T. Li and A. E. Willner, eds. (Academic, 2008, pp. 145–182).
  2. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008).
    [CrossRef] [PubMed]
  3. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
    [CrossRef]
  4. W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, “Reflection-mode optical injection locking,” Opt. Express18(20), 20887–20893 (2010).
    [CrossRef] [PubMed]
  5. X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express17(16), 13785–13791 (2009).
    [CrossRef] [PubMed]
  6. P. Guo, C. Zhang, J. Li, W. Yang, D. Parekh, C. J. Chang-Hasnain, W. Hu, A. Xu, and Z. Chen, “Long distance transmission of SC-FDMA signals by directly-modulated OIL-VCSEL,” Chin. Opt. Lett.10(9), 091407 (2012).
    [CrossRef]
  7. G. Maury, A. Hilt, T. Berceli, B. Cabon, and A. Vilcot, “Microwave-frequency conversion methods by optical interferometer and photodiode,” IEEE Trans. Microw. Theory Tech.45(8), 1481–1485 (1997).
    [CrossRef]
  8. S. B. Constant, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Low-cost all-optical up-conversion of digital radio signals using a directly modulated 1550 nm emitting VCSEL,” IEEE Photon. Technol. Lett.20(2), 120–122 (2008).
    [CrossRef]
  9. P. Guo, C. Zhang, W. Yang, D. Parekh, C. J. Chang-Hasnain, W. Hu, A. Xu, and Z. Chen, “RF down-conversion based on optically injection-locked VCSEL,” in Asia Communications and Photonics Conference and Exhibition, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AS2C.1.
  10. A. Ng'oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a multi-Gb/s 60 GHz radio over fiber system employing a directly modulated optically injection-locked VCSEL,” J. Lightwave Technol.28(16), 2436–2444 (2010).
    [CrossRef]
  11. H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron.15(3), 572–577 (2009).
    [CrossRef]

2012

2010

2009

X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express17(16), 13785–13791 (2009).
[CrossRef] [PubMed]

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron.15(3), 572–577 (2009).
[CrossRef]

2008

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008).
[CrossRef] [PubMed]

S. B. Constant, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Low-cost all-optical up-conversion of digital radio signals using a directly modulated 1550 nm emitting VCSEL,” IEEE Photon. Technol. Lett.20(2), 120–122 (2008).
[CrossRef]

2003

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

1997

G. Maury, A. Hilt, T. Berceli, B. Cabon, and A. Vilcot, “Microwave-frequency conversion methods by optical interferometer and photodiode,” IEEE Trans. Microw. Theory Tech.45(8), 1481–1485 (1997).
[CrossRef]

Amann, M. C.

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

Benjamin, S.

Berceli, T.

G. Maury, A. Hilt, T. Berceli, B. Cabon, and A. Vilcot, “Microwave-frequency conversion methods by optical interferometer and photodiode,” IEEE Trans. Microw. Theory Tech.45(8), 1481–1485 (1997).
[CrossRef]

Cabon, B.

S. B. Constant, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Low-cost all-optical up-conversion of digital radio signals using a directly modulated 1550 nm emitting VCSEL,” IEEE Photon. Technol. Lett.20(2), 120–122 (2008).
[CrossRef]

G. Maury, A. Hilt, T. Berceli, B. Cabon, and A. Vilcot, “Microwave-frequency conversion methods by optical interferometer and photodiode,” IEEE Trans. Microw. Theory Tech.45(8), 1481–1485 (1997).
[CrossRef]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

Chen, Z.

Christen, L.

Constant, S. B.

S. B. Constant, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Low-cost all-optical up-conversion of digital radio signals using a directly modulated 1550 nm emitting VCSEL,” IEEE Photon. Technol. Lett.20(2), 120–122 (2008).
[CrossRef]

Corrao, N.

S. B. Constant, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Low-cost all-optical up-conversion of digital radio signals using a directly modulated 1550 nm emitting VCSEL,” IEEE Photon. Technol. Lett.20(2), 120–122 (2008).
[CrossRef]

Fortusini, D.

Guo, P.

Hilt, A.

G. Maury, A. Hilt, T. Berceli, B. Cabon, and A. Vilcot, “Microwave-frequency conversion methods by optical interferometer and photodiode,” IEEE Trans. Microw. Theory Tech.45(8), 1481–1485 (1997).
[CrossRef]

Hofmann, W.

Hu, W.

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

Koyama, F.

Lau, E. K.

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron.15(3), 572–577 (2009).
[CrossRef]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008).
[CrossRef] [PubMed]

Le Guennec, Y.

S. B. Constant, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Low-cost all-optical up-conversion of digital radio signals using a directly modulated 1550 nm emitting VCSEL,” IEEE Photon. Technol. Lett.20(2), 120–122 (2008).
[CrossRef]

Li, J.

Maury, G.

S. B. Constant, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Low-cost all-optical up-conversion of digital radio signals using a directly modulated 1550 nm emitting VCSEL,” IEEE Photon. Technol. Lett.20(2), 120–122 (2008).
[CrossRef]

G. Maury, A. Hilt, T. Berceli, B. Cabon, and A. Vilcot, “Microwave-frequency conversion methods by optical interferometer and photodiode,” IEEE Trans. Microw. Theory Tech.45(8), 1481–1485 (1997).
[CrossRef]

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

Ng'oma, A.

Parekh, D.

P. Guo, C. Zhang, J. Li, W. Yang, D. Parekh, C. J. Chang-Hasnain, W. Hu, A. Xu, and Z. Chen, “Long distance transmission of SC-FDMA signals by directly-modulated OIL-VCSEL,” Chin. Opt. Lett.10(9), 091407 (2012).
[CrossRef]

A. Ng'oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a multi-Gb/s 60 GHz radio over fiber system employing a directly modulated optically injection-locked VCSEL,” J. Lightwave Technol.28(16), 2436–2444 (2010).
[CrossRef]

W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, “Reflection-mode optical injection locking,” Opt. Express18(20), 20887–20893 (2010).
[CrossRef] [PubMed]

X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express17(16), 13785–13791 (2009).
[CrossRef] [PubMed]

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron.15(3), 572–577 (2009).
[CrossRef]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008).
[CrossRef] [PubMed]

Sauer, M.

Sung, H. K.

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron.15(3), 572–577 (2009).
[CrossRef]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008).
[CrossRef] [PubMed]

Vilcot, A.

G. Maury, A. Hilt, T. Berceli, B. Cabon, and A. Vilcot, “Microwave-frequency conversion methods by optical interferometer and photodiode,” IEEE Trans. Microw. Theory Tech.45(8), 1481–1485 (1997).
[CrossRef]

Willner, A. E.

Wu, M. C.

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron.15(3), 572–577 (2009).
[CrossRef]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008).
[CrossRef] [PubMed]

Xu, A.

Yang, W.

Zhang, B.

Zhang, C.

Zhao, X.

Chin. Opt. Lett.

IEEE J. Quantum Electron.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron.15(3), 572–577 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

S. B. Constant, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Low-cost all-optical up-conversion of digital radio signals using a directly modulated 1550 nm emitting VCSEL,” IEEE Photon. Technol. Lett.20(2), 120–122 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

G. Maury, A. Hilt, T. Berceli, B. Cabon, and A. Vilcot, “Microwave-frequency conversion methods by optical interferometer and photodiode,” IEEE Trans. Microw. Theory Tech.45(8), 1481–1485 (1997).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

P. Guo, C. Zhang, W. Yang, D. Parekh, C. J. Chang-Hasnain, W. Hu, A. Xu, and Z. Chen, “RF down-conversion based on optically injection-locked VCSEL,” in Asia Communications and Photonics Conference and Exhibition, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AS2C.1.

C. J. Chang-Hasnain and X. Zhao, “Ultra-high speed VCSEL modulation by injection locking,” in Optical Fiber Telecommunication V A: Components and Subsystems, I. P. Kaminow, T. Li and A. E. Willner, eds. (Academic, 2008, pp. 145–182).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The flow diagram of the simulation: (a) Setting of the input modulated current J(t) (in electrons/sec.). (b) Calculation of the slave laser’s output field As from cavity based on standard OIL rate equations. (c) Calculation of the total output optical field At = As + Ar based on refection-mode OIL model. (d) Calculation of the output spectrum by Fast Fourier Transformation (FFT).

Fig. 2
Fig. 2

Simulation results of VCSEL’s output electrical frequency spectra and waveforms under two frequency tones (3.0 GHz and 3.5 GHz) modulation. (a) Frequency domain electrical spectra. (b) Time domain waveforms.

Fig. 3
Fig. 3

Simulation results of DM-OIL-VCSEL’s RF conversion gains versus wavelength detuning when injection ratio is fixed at 17.7 dB. The gains of free running condition are also plotted in the black lines for comparison.

Fig. 4
Fig. 4

Simulation results of DM-OIL-VCSEL’s RF conversion gains versus wavelength detuning when injection ratios are 8.7 dB, 11.7 dB, 14.7 dB, and 17.7 dB respectively. The gains of free running condition are also plotted in the black lines for comparison.

Fig. 5
Fig. 5

Simulation results of DM-OIL-VCSEL’s RF conversion gains versus injection ratio when wavelength detuning is optimized. The gains of free running condition are also plotted in the black lines for comparison.

Fig. 6
Fig. 6

Experimental setup for optical frequency up/down-conversion by OIL-VCSEL. (VCSEL: vertical cavity surface emitting laser, OC: optical circulator, PC: polarization controller, EC: electrical combiner, PD: photodiode, OSA: optical spectrum analyzer).

Fig. 7
Fig. 7

Experimental results of VCSEL’s output electrical frequency spectra and optical spectra under two frequency tones (3.0 GHz and 3.5 GHz) modulation. (a) Electrical spectrum under free running condition. (b) Electrical spectrum under optimized optical injection locking condition. (c) Optical spectra under different conditions.

Fig. 8
Fig. 8

Experimental results of DM-OIL-VCSEL’s RF conversion gains versus injection ratio when wavelength detuning is optimized. The gains of free running condition are also plotted in the black lines for comparison.

Fig. 9
Fig. 9

Experimental setup for SFDR testing. (VCSEL: vertical cavity surface emitting laser, OC: optical circulator, PC: polarization controller, EC: electrical combiner, PD: photodiode, OSA: optical spectrum analyzer, ESA: electrical spectrum analyzer).

Fig. 10
Fig. 10

Experimental results of SFDR testing (RF signals: 4.99 GHz and 5.01 GHz, local oscillator: 4.9 GHz): (a) 90 MHz and 110 MHz down-conversion signals under FR condition (gray dotted lines) and OIL condition (blue solid lines). Insets: Electrical spectra for SFDR testing. (b) 9.89 GHz and 9.91 GHz up-conversion signals under FR condition (gray dotted lines) and OIL condition (blue solid lines).

Fig. 11
Fig. 11

Experimental results of SFDR testing (RF signals: 4.99 GHz and 5.01 GHz, local oscillator: 4.9 GHz): 90 MHz and 110 MHz down-conversion signals under OIL condition (blue solid lines), 4.99 GHz and 5.01 GHz RF signals under FR condition (gray dotted lines). Insets: Electrical spectra for SFDR testing.

Tables (2)

Tables Icon

Table 1 Simulation Results of Conversion Gain Comparison between FR and OIL Conditions

Tables Icon

Table 2 Experimental Results of Conversion Gain Comparison between FR and OIL Conditions

Metrics