Abstract

We present here an optomechanical system fabricated with novel stress management techniques that allow us to suspend an ultrathin defect-free silicon photonic-crystal membrane above a Silicon-on-Insulator (SOI) substrate with a gap that is tunable to below 200 nm. Our devices are able to generate strong attractive and repulsive optical forces over a large surface area with simple in- and out- coupling and feature the strongest repulsive optomechanical coupling in any geometry to date (gOM/2π ≈ −65 GHz/nm). The interplay between the optomechanical and photo-thermal-mechanical dynamics is explored, and the latter is used to achieve cooling and amplification of the mechanical mode, demonstrating that our platform is well-suited for potential applications in low-power mass, force, and refractive-index sensing as well as optomechanical accelerometry.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
    [CrossRef]
  2. X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
    [CrossRef] [PubMed]
  3. B. R. Ilic, S. Krylov, M. Kondratovich, and H. G. Craighead, “Optically actuated nanoelectromechanical oscillators,” IEEE J. Sel. Top. Quantum Electron. 13, 392–399 (2007).
    [CrossRef]
  4. Y. T. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
    [CrossRef]
  5. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–579 (2009).
    [CrossRef] [PubMed]
  6. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
    [CrossRef] [PubMed]
  7. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
    [CrossRef] [PubMed]
  8. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
    [CrossRef]
  9. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 79, 033804 (2009).
    [CrossRef]
  10. R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the Quantum ground state,” Phys. Rev. A 83, 063835 (2011).
    [CrossRef]
  11. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [CrossRef] [PubMed]
  12. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
    [CrossRef] [PubMed]
  13. A. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat Photonics 6, 768–772 (2012).
    [CrossRef]
  14. O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
    [CrossRef] [PubMed]
  15. M. W. Pruessner, T. H. Stievater, J. B. Khurgin, and W. S. Rabinovich, “Integrated waveguide-DBR microcavity optomechanical system,” Opt. Express 19, 21904–21918 (2011).
    [CrossRef] [PubMed]
  16. H. Fu, C. D. Liu, Y. Liu, J. R. Chu, and G. Y. Cao, “Selective photothermal self-excitation of mechanical modes of a micro-cantilever for force microscopy,” Appl. Phys. Lett. 99, 173501 (2011).
    [CrossRef]
  17. Q. Lin, J. Rosenberg, X. S. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
    [CrossRef] [PubMed]
  18. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
    [CrossRef]
  19. M. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
    [CrossRef]
  20. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
    [CrossRef] [PubMed]
  21. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
    [CrossRef] [PubMed]
  22. M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
    [CrossRef] [PubMed]
  23. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
    [CrossRef] [PubMed]
  24. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3, 464–468 (2009).
    [CrossRef]
  25. The expresion for the force is only strictly true when the (complex) wavevector is constant under translation, though it can still be used when the change in optical Q is small over the distance ds.
  26. A. W. Rodriguez, F. Capasso, and S. G. Johnson, “Bonding, antibonding and tunable optical forces in asymmetric membranes,” Opt. Express 19, 2225–2241 (2011).
    [CrossRef] [PubMed]
  27. J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
    [CrossRef] [PubMed]
  28. E. Iwase, P. C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Loncar, “Control of buckling in large micromembranes using engineered support structures” J. Micromech. Microeng. 22, 065028 (2012).
    [CrossRef]
  29. D. Blocher, A. T. Zehnder, R. H. Rand, and S. Mukerji, “Anchor deformations drive limit cycle oscillations in interferometrically transduced MEMS beams,” Finite. Elem. Anal. Des. 49, 52–57 (2012).
    [CrossRef]
  30. P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters” Nat Commun 3, 846 (2012).
    [CrossRef] [PubMed]
  31. Y. Y. Gong, A. Rundquist, A. Majumdar, and J. Vuckovic, “Low power resonant optical excitation of an optomechanical cavity,” Opt. Express 19, 1429–1440 (2011).
    [CrossRef] [PubMed]
  32. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006).
    [CrossRef] [PubMed]
  33. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  34. Near-field thermal heat-transfer will modify ?t by a small amount, though we ignore this small effect in our analysis here for simplicity.
  35. H.A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  36. D. Rugar, H. J. Mamin, and P. Guethner, “Improved Fiber-Optic Interferometer for Atomic Force Microscopy,” Appl. Phys. Lett. 55, 2588–2590 (1989).
    [CrossRef]
  37. E. R. I. Abraham and E. A. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Appl. Optics 37, 1762–1763 (1998).
    [CrossRef]
  38. K. J. Vahala, “Back-action limit of linewidth in an optomechanical oscillator,” Phys Rev A 78, 023832 (2008).
    [CrossRef]
  39. J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbo, “Photonic-crystal membranes for optical detection of single nanoparticles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012).
    [CrossRef] [PubMed]
  40. M. El Beheiry, V. Liu, S. H. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010).
    [CrossRef] [PubMed]
  41. T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” J. Microelectromech S 15, 1466–1476 (2006).
    [CrossRef]
  42. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7, 1238–1255 (2007).
    [CrossRef] [PubMed]
  43. J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol 6, 203–215 (2011).
    [CrossRef] [PubMed]
  44. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett. 87, 211801 (2001).
    [CrossRef] [PubMed]
  45. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 293, 607–607 (2001).
  46. A. W. Rodriguez, F. Capasso, and S. G. Johnson, “The Casimir effect in microstructured geometries,” Nat. Photonics 5, 211–221 (2011).
    [CrossRef]
  47. S. J. Rahi, A. W. Rodriguez, T. Emig, R. L. Jaffe, S. G. Johnson, and M. Kardar, “Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders,” Phys. Rev. A 77, 030101 (2008).
    [CrossRef]
  48. J. L. Yang, T. Ono, and M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
    [CrossRef]
  49. M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
    [CrossRef]

2012 (6)

A. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat Photonics 6, 768–772 (2012).
[CrossRef]

J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

E. Iwase, P. C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Loncar, “Control of buckling in large micromembranes using engineered support structures” J. Micromech. Microeng. 22, 065028 (2012).
[CrossRef]

D. Blocher, A. T. Zehnder, R. H. Rand, and S. Mukerji, “Anchor deformations drive limit cycle oscillations in interferometrically transduced MEMS beams,” Finite. Elem. Anal. Des. 49, 52–57 (2012).
[CrossRef]

P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters” Nat Commun 3, 846 (2012).
[CrossRef] [PubMed]

J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbo, “Photonic-crystal membranes for optical detection of single nanoparticles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012).
[CrossRef] [PubMed]

2011 (8)

A. W. Rodriguez, F. Capasso, and S. G. Johnson, “The Casimir effect in microstructured geometries,” Nat. Photonics 5, 211–221 (2011).
[CrossRef]

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol 6, 203–215 (2011).
[CrossRef] [PubMed]

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the Quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

H. Fu, C. D. Liu, Y. Liu, J. R. Chu, and G. Y. Cao, “Selective photothermal self-excitation of mechanical modes of a micro-cantilever for force microscopy,” Appl. Phys. Lett. 99, 173501 (2011).
[CrossRef]

Y. Y. Gong, A. Rundquist, A. Majumdar, and J. Vuckovic, “Low power resonant optical excitation of an optomechanical cavity,” Opt. Express 19, 1429–1440 (2011).
[CrossRef] [PubMed]

A. W. Rodriguez, F. Capasso, and S. G. Johnson, “Bonding, antibonding and tunable optical forces in asymmetric membranes,” Opt. Express 19, 2225–2241 (2011).
[CrossRef] [PubMed]

M. W. Pruessner, T. H. Stievater, J. B. Khurgin, and W. S. Rabinovich, “Integrated waveguide-DBR microcavity optomechanical system,” Opt. Express 19, 21904–21918 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (8)

Q. Lin, J. Rosenberg, X. S. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

M. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 79, 033804 (2009).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–579 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3, 464–468 (2009).
[CrossRef]

2008 (4)

S. J. Rahi, A. W. Rodriguez, T. Emig, R. L. Jaffe, S. G. Johnson, and M. Kardar, “Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders,” Phys. Rev. A 77, 030101 (2008).
[CrossRef]

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

K. J. Vahala, “Back-action limit of linewidth in an optomechanical oscillator,” Phys Rev A 78, 023832 (2008).
[CrossRef]

2007 (3)

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

B. R. Ilic, S. Krylov, M. Kondratovich, and H. G. Craighead, “Optically actuated nanoelectromechanical oscillators,” IEEE J. Sel. Top. Quantum Electron. 13, 392–399 (2007).
[CrossRef]

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7, 1238–1255 (2007).
[CrossRef] [PubMed]

2006 (6)

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” J. Microelectromech S 15, 1466–1476 (2006).
[CrossRef]

Y. T. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef]

O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[CrossRef]

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006).
[CrossRef] [PubMed]

2005 (2)

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

2004 (1)

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[CrossRef] [PubMed]

2003 (1)

N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[CrossRef]

2002 (1)

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

2001 (2)

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett. 87, 211801 (2001).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 293, 607–607 (2001).

2000 (1)

J. L. Yang, T. Ono, and M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
[CrossRef]

1998 (1)

E. R. I. Abraham and E. A. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Appl. Optics 37, 1762–1763 (1998).
[CrossRef]

1989 (1)

D. Rugar, H. J. Mamin, and P. Guethner, “Improved Fiber-Optic Interferometer for Atomic Force Microscopy,” Appl. Phys. Lett. 55, 2588–2590 (1989).
[CrossRef]

Abraham, E. R. I.

E. R. I. Abraham and E. A. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Appl. Optics 37, 1762–1763 (1998).
[CrossRef]

Aksyuk, V. A.

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett. 87, 211801 (2001).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 293, 607–607 (2001).

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Anetsberger, G.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

Arcizet, O.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the Quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Arlett, J. L.

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol 6, 203–215 (2011).
[CrossRef] [PubMed]

Aspelmeyer, M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 79, 033804 (2009).
[CrossRef]

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Bishop, D. J.

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett. 87, 211801 (2001).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 293, 607–607 (2001).

Blasius, T. D.

A. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat Photonics 6, 768–772 (2012).
[CrossRef]

Blocher, D.

D. Blocher, A. T. Zehnder, R. H. Rand, and S. Mukerji, “Anchor deformations drive limit cycle oscillations in interferometrically transduced MEMS beams,” Finite. Elem. Anal. Des. 49, 52–57 (2012).
[CrossRef]

Borselli, M.

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006).
[CrossRef] [PubMed]

Briant, T.

O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Bulu, I.

P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters” Nat Commun 3, 846 (2012).
[CrossRef] [PubMed]

Burg, T. P.

T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” J. Microelectromech S 15, 1466–1476 (2006).
[CrossRef]

Callegari, C.

Y. T. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–579 (2009).
[CrossRef] [PubMed]

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

Cao, G. Y.

H. Fu, C. D. Liu, Y. Liu, J. R. Chu, and G. Y. Cao, “Selective photothermal self-excitation of mechanical modes of a micro-cantilever for force microscopy,” Appl. Phys. Lett. 99, 173501 (2011).
[CrossRef]

Capasso, F.

E. Iwase, P. C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Loncar, “Control of buckling in large micromembranes using engineered support structures” J. Micromech. Microeng. 22, 065028 (2012).
[CrossRef]

A. W. Rodriguez, F. Capasso, and S. G. Johnson, “Bonding, antibonding and tunable optical forces in asymmetric membranes,” Opt. Express 19, 2225–2241 (2011).
[CrossRef] [PubMed]

A. W. Rodriguez, F. Capasso, and S. G. Johnson, “The Casimir effect in microstructured geometries,” Nat. Photonics 5, 211–221 (2011).
[CrossRef]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett. 87, 211801 (2001).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 293, 607–607 (2001).

Chan, H. B.

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 293, 607–607 (2001).

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett. 87, 211801 (2001).
[CrossRef] [PubMed]

Chan, J.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–579 (2009).
[CrossRef] [PubMed]

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Chu, J. R.

H. Fu, C. D. Liu, Y. Liu, J. R. Chu, and G. Y. Cao, “Selective photothermal self-excitation of mechanical modes of a micro-cantilever for force microscopy,” Appl. Phys. Lett. 99, 173501 (2011).
[CrossRef]

Chua, S. L.

J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Cohadon, P.F.

O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Cornell, E. A.

E. R. I. Abraham and E. A. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Appl. Optics 37, 1762–1763 (1998).
[CrossRef]

Craighead, H. G.

B. R. Ilic, S. Krylov, M. Kondratovich, and H. G. Craighead, “Optically actuated nanoelectromechanical oscillators,” IEEE J. Sel. Top. Quantum Electron. 13, 392–399 (2007).
[CrossRef]

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7, 1238–1255 (2007).
[CrossRef] [PubMed]

Datskos, P. G.

N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[CrossRef]

Del’Haye, P.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[CrossRef]

Deleglise, S.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the Quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

Deotare, P. B.

P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters” Nat Commun 3, 846 (2012).
[CrossRef] [PubMed]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–579 (2009).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

Ekinci, K. L.

Y. T. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef]

El Beheiry, M.

Emig, T.

S. J. Rahi, A. W. Rodriguez, T. Emig, R. L. Jaffe, S. G. Johnson, and M. Kardar, “Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders,” Phys. Rev. A 77, 030101 (2008).
[CrossRef]

Esashi, M.

J. L. Yang, T. Ono, and M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
[CrossRef]

Fan, S. H.

M. El Beheiry, V. Liu, S. H. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010).
[CrossRef] [PubMed]

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Feng, X. L.

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

Y. T. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef]

Foster, J. S.

T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” J. Microelectromech S 15, 1466–1476 (2006).
[CrossRef]

Frank, I. W.

P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters” Nat Commun 3, 846 (2012).
[CrossRef] [PubMed]

Fu, H.

H. Fu, C. D. Liu, Y. Liu, J. R. Chu, and G. Y. Cao, “Selective photothermal self-excitation of mechanical modes of a micro-cantilever for force microscopy,” Appl. Phys. Lett. 99, 173501 (2011).
[CrossRef]

Gavartin, E.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the Quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

Genes, C.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 79, 033804 (2009).
[CrossRef]

Gigan, S.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 79, 033804 (2009).
[CrossRef]

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Gong, Y. Y.

Grepstad, J. O.

J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbo, “Photonic-crystal membranes for optical detection of single nanoparticles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012).
[CrossRef] [PubMed]

Groblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Guethner, P.

D. Rugar, H. J. Mamin, and P. Guethner, “Improved Fiber-Optic Interferometer for Atomic Force Microscopy,” Appl. Phys. Lett. 55, 2588–2590 (1989).
[CrossRef]

Hajimiri, A.

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

Haus, H.A.

H.A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Heidmann, A.

O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Hill, J. T.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Hui, P. C.

E. Iwase, P. C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Loncar, “Control of buckling in large micromembranes using engineered support structures” J. Micromech. Microeng. 22, 065028 (2012).
[CrossRef]

Ibanescu, M.

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

Ilic, B. R.

B. R. Ilic, S. Krylov, M. Kondratovich, and H. G. Craighead, “Optically actuated nanoelectromechanical oscillators,” IEEE J. Sel. Top. Quantum Electron. 13, 392–399 (2007).
[CrossRef]

Ilic, R.

P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters” Nat Commun 3, 846 (2012).
[CrossRef] [PubMed]

Iwase, E.

E. Iwase, P. C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Loncar, “Control of buckling in large micromembranes using engineered support structures” J. Micromech. Microeng. 22, 065028 (2012).
[CrossRef]

Jaffe, R. L.

S. J. Rahi, A. W. Rodriguez, T. Emig, R. L. Jaffe, S. G. Johnson, and M. Kardar, “Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders,” Phys. Rev. A 77, 030101 (2008).
[CrossRef]

Jiang, X. S.

Q. Lin, J. Rosenberg, X. S. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Joannopoulos, J. D.

J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Johansen, I. R.

J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbo, “Photonic-crystal membranes for optical detection of single nanoparticles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012).
[CrossRef] [PubMed]

Johnson, S. G.

E. Iwase, P. C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Loncar, “Control of buckling in large micromembranes using engineered support structures” J. Micromech. Microeng. 22, 065028 (2012).
[CrossRef]

A. W. Rodriguez, F. Capasso, and S. G. Johnson, “The Casimir effect in microstructured geometries,” Nat. Photonics 5, 211–221 (2011).
[CrossRef]

A. W. Rodriguez, F. Capasso, and S. G. Johnson, “Bonding, antibonding and tunable optical forces in asymmetric membranes,” Opt. Express 19, 2225–2241 (2011).
[CrossRef] [PubMed]

S. J. Rahi, A. W. Rodriguez, T. Emig, R. L. Jaffe, S. G. Johnson, and M. Kardar, “Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders,” Phys. Rev. A 77, 030101 (2008).
[CrossRef]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
[CrossRef] [PubMed]

Johnson, T. J.

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

Kardar, M.

S. J. Rahi, A. W. Rodriguez, T. Emig, R. L. Jaffe, S. G. Johnson, and M. Kardar, “Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders,” Phys. Rev. A 77, 030101 (2008).
[CrossRef]

Karrai, K.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[CrossRef] [PubMed]

Kaspar, P.

J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbo, “Photonic-crystal membranes for optical detection of single nanoparticles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012).
[CrossRef] [PubMed]

Khurgin, J. B.

Kippenberg, T. J.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the Quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[CrossRef]

Kleiman, R. N.

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett. 87, 211801 (2001).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 293, 607–607 (2001).

Kondratovich, M.

B. R. Ilic, S. Krylov, M. Kondratovich, and H. G. Craighead, “Optically actuated nanoelectromechanical oscillators,” IEEE J. Sel. Top. Quantum Electron. 13, 392–399 (2007).
[CrossRef]

Kotthaus, J. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

Krause, A.

A. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat Photonics 6, 768–772 (2012).
[CrossRef]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Krylov, S.

B. R. Ilic, S. Krylov, M. Kondratovich, and H. G. Craighead, “Optically actuated nanoelectromechanical oscillators,” IEEE J. Sel. Top. Quantum Electron. 13, 392–399 (2007).
[CrossRef]

Lavrik, N. V.

N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[CrossRef]

Lee, J.

J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Levi, O.

Li, M.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3, 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Lin, Q.

A. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat Photonics 6, 768–772 (2012).
[CrossRef]

Q. Lin, J. Rosenberg, X. S. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Lipson, M.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Liu, C. D.

H. Fu, C. D. Liu, Y. Liu, J. R. Chu, and G. Y. Cao, “Selective photothermal self-excitation of mechanical modes of a micro-cantilever for force microscopy,” Appl. Phys. Lett. 99, 173501 (2011).
[CrossRef]

Liu, V.

Liu, Y.

H. Fu, C. D. Liu, Y. Liu, J. R. Chu, and G. Y. Cao, “Selective photothermal self-excitation of mechanical modes of a micro-cantilever for force microscopy,” Appl. Phys. Lett. 99, 173501 (2011).
[CrossRef]

Loncar, M.

E. Iwase, P. C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Loncar, “Control of buckling in large micromembranes using engineered support structures” J. Micromech. Microeng. 22, 065028 (2012).
[CrossRef]

P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters” Nat Commun 3, 846 (2012).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

M. Li, M.

M. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

Majumdar, A.

Mamin, H. J.

D. Rugar, H. J. Mamin, and P. Guethner, “Improved Fiber-Optic Interferometer for Atomic Force Microscopy,” Appl. Phys. Lett. 55, 2588–2590 (1989).
[CrossRef]

Manalis, S. R.

T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” J. Microelectromech S 15, 1466–1476 (2006).
[CrossRef]

Metzger, C. H.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[CrossRef] [PubMed]

Milovic, N.

T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” J. Microelectromech S 15, 1466–1476 (2006).
[CrossRef]

Mirza, A. R.

T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” J. Microelectromech S 15, 1466–1476 (2006).
[CrossRef]

Mukerji, S.

D. Blocher, A. T. Zehnder, R. H. Rand, and S. Mukerji, “Anchor deformations drive limit cycle oscillations in interferometrically transduced MEMS beams,” Finite. Elem. Anal. Des. 49, 52–57 (2012).
[CrossRef]

Myers, E. B.

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol 6, 203–215 (2011).
[CrossRef] [PubMed]

Nooshi, N.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[CrossRef]

Ono, T.

J. L. Yang, T. Ono, and M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
[CrossRef]

Painter, O.

A. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat Photonics 6, 768–772 (2012).
[CrossRef]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. S. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–579 (2009).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14, 817–831 (2006).
[CrossRef] [PubMed]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3, 464–468 (2009).
[CrossRef]

M. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Pinard, M.

O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

Popescu, G. A.

T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” J. Microelectromech S 15, 1466–1476 (2006).
[CrossRef]

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

Pruessner, M. W.

Qiu, W. J.

J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Quan, Q. M.

P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters” Nat Commun 3, 846 (2012).
[CrossRef] [PubMed]

Rabinovich, W. S.

Rahi, S. J.

S. J. Rahi, A. W. Rodriguez, T. Emig, R. L. Jaffe, S. G. Johnson, and M. Kardar, “Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders,” Phys. Rev. A 77, 030101 (2008).
[CrossRef]

Rand, R. H.

D. Blocher, A. T. Zehnder, R. H. Rand, and S. Mukerji, “Anchor deformations drive limit cycle oscillations in interferometrically transduced MEMS beams,” Finite. Elem. Anal. Des. 49, 52–57 (2012).
[CrossRef]

Riviere, R.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the Quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

Rodriguez, A. W.

E. Iwase, P. C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Loncar, “Control of buckling in large micromembranes using engineered support structures” J. Micromech. Microeng. 22, 065028 (2012).
[CrossRef]

A. W. Rodriguez, F. Capasso, and S. G. Johnson, “The Casimir effect in microstructured geometries,” Nat. Photonics 5, 211–221 (2011).
[CrossRef]

A. W. Rodriguez, F. Capasso, and S. G. Johnson, “Bonding, antibonding and tunable optical forces in asymmetric membranes,” Opt. Express 19, 2225–2241 (2011).
[CrossRef] [PubMed]

S. J. Rahi, A. W. Rodriguez, T. Emig, R. L. Jaffe, S. G. Johnson, and M. Kardar, “Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders,” Phys. Rev. A 77, 030101 (2008).
[CrossRef]

Rosenberg, J.

Q. Lin, J. Rosenberg, X. S. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Roukes, M. L.

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol 6, 203–215 (2011).
[CrossRef] [PubMed]

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

Y. T. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef]

Rugar, D.

D. Rugar, H. J. Mamin, and P. Guethner, “Improved Fiber-Optic Interferometer for Atomic Force Microscopy,” Appl. Phys. Lett. 55, 2588–2590 (1989).
[CrossRef]

Rundquist, A.

Safavi-Naeini, A. H.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

Schliesser, A.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the Quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[CrossRef]

Shapira, O.

J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Smythe, E. J.

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

Solgaard, O.

J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbo, “Photonic-crystal membranes for optical detection of single nanoparticles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012).
[CrossRef] [PubMed]

Soljacic, M.

J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Stievater, T. H.

Sudbo, A. S.

J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbo, “Photonic-crystal membranes for optical detection of single nanoparticles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012).
[CrossRef] [PubMed]

Tang, H. X.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3, 464–468 (2009).
[CrossRef]

M. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Tombesi, P.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 79, 033804 (2009).
[CrossRef]

Tsau, C. H.

T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” J. Microelectromech S 15, 1466–1476 (2006).
[CrossRef]

Unterreithmeier, Q. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

Vahala, K. J.

Q. Lin, J. Rosenberg, X. S. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–579 (2009).
[CrossRef] [PubMed]

K. J. Vahala, “Back-action limit of linewidth in an optomechanical oscillator,” Phys Rev A 78, 023832 (2008).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[CrossRef]

Vitali, D.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 79, 033804 (2009).
[CrossRef]

Vuckovic, J.

Waggoner, P. S.

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7, 1238–1255 (2007).
[CrossRef] [PubMed]

Weig, E. M.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

Weis, S.

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the Quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

White, C. J.

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Winger, M.

A. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat Photonics 6, 768–772 (2012).
[CrossRef]

Woolf, D.

E. Iwase, P. C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Loncar, “Control of buckling in large micromembranes using engineered support structures” J. Micromech. Microeng. 22, 065028 (2012).
[CrossRef]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Y. T. Yang, Y. T.

Y. T. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef]

Yang, J. L.

J. L. Yang, T. Ono, and M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
[CrossRef]

Zehnder, A. T.

D. Blocher, A. T. Zehnder, R. H. Rand, and S. Mukerji, “Anchor deformations drive limit cycle oscillations in interferometrically transduced MEMS beams,” Finite. Elem. Anal. Des. 49, 52–57 (2012).
[CrossRef]

Zhang, Y. N.

P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters” Nat Commun 3, 846 (2012).
[CrossRef] [PubMed]

Zhen, B.

J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Appl. Optics (1)

E. R. I. Abraham and E. A. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Appl. Optics 37, 1762–1763 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

H. Fu, C. D. Liu, Y. Liu, J. R. Chu, and G. Y. Cao, “Selective photothermal self-excitation of mechanical modes of a micro-cantilever for force microscopy,” Appl. Phys. Lett. 99, 173501 (2011).
[CrossRef]

Appl. Phys. Lett. (4)

D. Rugar, H. J. Mamin, and P. Guethner, “Improved Fiber-Optic Interferometer for Atomic Force Microscopy,” Appl. Phys. Lett. 55, 2588–2590 (1989).
[CrossRef]

N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003).
[CrossRef]

J. L. Yang, T. Ono, and M. Esashi, “Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers,” Appl. Phys. Lett. 77, 3860–3862 (2000).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88, 131114 (2006).
[CrossRef]

Finite. Elem. Anal. Des. (1)

D. Blocher, A. T. Zehnder, R. H. Rand, and S. Mukerji, “Anchor deformations drive limit cycle oscillations in interferometrically transduced MEMS beams,” Finite. Elem. Anal. Des. 49, 52–57 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. R. Ilic, S. Krylov, M. Kondratovich, and H. G. Craighead, “Optically actuated nanoelectromechanical oscillators,” IEEE J. Sel. Top. Quantum Electron. 13, 392–399 (2007).
[CrossRef]

J. Microelectromech S (1)

T. P. Burg, A. R. Mirza, N. Milovic, C. H. Tsau, G. A. Popescu, J. S. Foster, and S. R. Manalis, “Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection,” J. Microelectromech S 15, 1466–1476 (2006).
[CrossRef]

J. Micromech. Microeng. (1)

E. Iwase, P. C. Hui, D. Woolf, A. W. Rodriguez, S. G. Johnson, F. Capasso, and M. Loncar, “Control of buckling in large micromembranes using engineered support structures” J. Micromech. Microeng. 22, 065028 (2012).
[CrossRef]

Lab Chip (1)

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7, 1238–1255 (2007).
[CrossRef] [PubMed]

Nano Lett. (1)

Y. T. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
[CrossRef]

Nat Commun (1)

P. B. Deotare, I. Bulu, I. W. Frank, Q. M. Quan, Y. N. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechanical filters” Nat Commun 3, 846 (2012).
[CrossRef] [PubMed]

Nat Photonics (1)

A. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat Photonics 6, 768–772 (2012).
[CrossRef]

Nat. Nanotechnol (1)

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol 6, 203–215 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol. 3, 342–346 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3, 464–468 (2009).
[CrossRef]

A. W. Rodriguez, F. Capasso, and S. G. Johnson, “The Casimir effect in microstructured geometries,” Nat. Photonics 5, 211–221 (2011).
[CrossRef]

Nat. Phys. (1)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[CrossRef]

Nature (7)

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–579 (2009).
[CrossRef] [PubMed]

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[CrossRef] [PubMed]

O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005).
[CrossRef] [PubMed]

J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbo, “Photonic-crystal membranes for optical detection of single nanoparticles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys Rev A (1)

K. J. Vahala, “Back-action limit of linewidth in an optomechanical oscillator,” Phys Rev A 78, 023832 (2008).
[CrossRef]

Phys. Rev. A (1)

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 79, 033804 (2009).
[CrossRef]

Phys. Rev. A (2)

R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the Quantum ground state,” Phys. Rev. A 83, 063835 (2011).
[CrossRef]

S. J. Rahi, A. W. Rodriguez, T. Emig, R. L. Jaffe, S. G. Johnson, and M. Kardar, “Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders,” Phys. Rev. A 77, 030101 (2008).
[CrossRef]

Phys. Rev. B (1)

S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Phys. Rev. Lett. (5)

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[CrossRef]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Nonlinear micromechanical Casimir oscillator,” Phys. Rev. Lett. 87, 211801 (2001).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. S. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

M. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[CrossRef] [PubMed]

Science (1)

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 293, 607–607 (2001).

Other (3)

Near-field thermal heat-transfer will modify ?t by a small amount, though we ignore this small effect in our analysis here for simplicity.

H.A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

The expresion for the force is only strictly true when the (complex) wavevector is constant under translation, though it can still be used when the change in optical Q is small over the distance ds.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) SEM image of a device consisting of a h = 185 nm thick silicon membrane patterned with a square-lattice photonic crystal with a 30×30 periodic hole array of period p = 0.92 μm and hole diameter d = 0.414 μm suspended 165 nm above a Silicon-on-Insulator (SOI) substrate (h = 185 nm, buried oxide layer = 2 μm, cross-section shown schematically in (b)). The membrane is supported by four arms (L = 19.3 μm, W = 2.75 μm) that are terminated on their far ends by arrays of etch holes and on their near ends by “accordion-like” structures (inset i) which provide lithographic control of membrane-substrate separation. (c) A 3D optical mode simulation shows the x-component of the electric field of a single unit cell of the geometry in (b) with s = 100 nm for an antibonding mode of the structure at λ0=1570 nm. The antisymmetric field symmetry with respect to the gap between the membrane and the substrate implies that this optical mode generates a repulsive force. (d) The calculated resonance wavelength λ0 (red line) of the mode in (c) is plotted with data points (red circles) representing 16 different devices with identical membrane designs but different membrane-substrate separations. The separations were determined by interferometric measurements using an optical profilometer. The blue line is optomechanical coupling coefficient of the mode and is proportional to the slope of the red line (gOM∝ −dλ/ds).

Fig. 2
Fig. 2

Scanning Electron Microscope (SEM) images (a,d,g), optical profilometer images showing interferometric measurements of height (b,c,h) and mechanical simulations in COMSOL Multiphysics confirming the behavior measured by the profilometer (d,f,i) are shown for three separate devices. The first device (a) has simple support arms which offer no control over the stresses inherent in the wafer. The result is a membrane which deflects strongly upward by 365 nm (b,c) due to compressive stress in the membrane and an upward torque caused by a bending moment at the Si-SiO2 etch boundary. The second device (b) has an accordion-like structures between the arms and the membrane (see inset, Fig. 1(a)) and an approximately rectangular etch-hole pattern at the base of each arm to combat compressive stress and the bending moment at the etch boundary. The result is a device which only deflects upward 35 nm (e,f), an order of magnitude improvement over the device in (a). The triangular design of the etch-hole pattern in the third device (g) utilizes the torque induced at the etch boundary to generate a controllable downward deflection. The result (h,i) is a membrane which deflects downward 105 nm from the surrounding silicon layer.

Fig. 3
Fig. 3

Experimental apparatus. The outputs from two tunable near IR lasers (λ = 1480 nm–1580 nm and λ = 1580 nm–1680 nm) are combined using a fiber-directional coupler. Half of the signal is diverted to Photodetector 2 as a reference and half is coupled into a high –vacuum chamber (HVC) via a custom made fiber-feedthrough port [?]. The cleaved fiber is positioned above the center of the device, so that the cleaved fiber facet is parallel to the membrane (inset i., not to scale). The reflected optical signal is measured at Photodetector 1. Optical reflection spectra are taken by sweeping the lasers’ wavelengths across the optical resonances and collecting the signal via the Data Acquisition (DAQ) board. The optical resonance centered at λ0 = 1561.1 nm (inset ii) has a Fano shape (black line) and Qopt = 2500. Mechanical spectra are obtained by taking the Fourier transform of the photodetector signal using the spectrum analyzer (SA) to measure the small thermal vibrations of the membrane. The fundamental mechanical resonance (inset iii), defined by resonance frequency Ωm and linewidth Γm, is shown for a low-power measurement at λ =1561.2 nm (red dot, inset ii.).

Fig. 4
Fig. 4

Optomechanical coupling curves for two devices with different membrane-substrate separations experiencing photothermal and optical forces. Data (green circles) were collected by measuring the vibrational spectra (Fig. 3, inset iii.) for several wavelengths around the cavity resonance. The data in (a) correspond to the device in Fig. 2(d), whose cavity resonance is centered at λ0=1576.4 nm. The data in (b) correspond to the device in Fig. 2(g), whose cavity resonance is centered at λ0=1561.1nm. The photothermal force Fpth (red arrows, top insets) is attractive and approximately constant in both devices. The repulsive optical force Fopt (blue arrows), increases in magnitude from (a) to (b), as the magnitude of gOM/2π increases from −3.3 GHz/nm to −30 GHz/nm. In our system, Fopt and Fpth have opposing effects on Ωm (top panels). In (a), photo-thermal-mechanical (PtM) dynamics (red dashed lines) dominate and the device undergoes softening (δΩm < 0) when the laser is blue-detuned (Δ′0 > 0, blue shaded region) and stiffening (δΩm > 0) when red-detuned (Δ′0 < 0, red shaded region). In (b), optomechanical (OM) dynamics (blue dashed lines) dominate and the device undergoes blue-detuned stiffening and red-detuned softening. Bottom panels: Both devices undergo blue-detuned cooling (δΓm > 0) and red-detuned amplification (δΓm < 0) due to PtM effects only. The maximum values of δΩm and δΓm shown in both (a) and (b) are approximately equal in magnitude, but the dynamics in (b) were achieved with an order of magnitude less optical power due to the strength of opto-mechanical coupling (gOM) in (b).

Fig. 5
Fig. 5

(a): Mechanical linewidth of the device (green circles) in Fig. 4(b) as a function of laser wavelength at an incident power of 30 μW, showing blue-detuned cooling and red-detuned amplification. The overall dynamics (black line) are dominated by photo-thermal mechanics (red dashed line, not seen), since optomechanical interactions (blue dashed line) are negligible. On the red side of the resonance between 1561.2 nm and 1562.1 nm (grey shaded region of (a)), the mechanical linewidth hits a floor as the system undergoes generative oscillations. (b): The vibrational spectrum of the mode when λl= 1561.5 nm is shown (pink circles) with the Lorentzian fit (red line), where Γm/2π = 70 mHz. (c): On the other side of the resonance, the mechanical vibration is cooled. The mechanical resonance is plotted (dark blue dots) and fit for six powers: 6 (red line), 12 (orange line), 30 (yellow line), 40 (green line), 100 (blue line), and 200 μW (purple line). In our system, linewidth broadening is due to mechanical cooling only. Thus, Γm and the area under the mechanical resonance curves (blue shaded regions) are both be proportional to the effective temperature of the mode (Teff), which is plotted as a function of power in the inset. The colors of the data points correspond to the colors of the lines in (c), and the points are fit to the expression in the text. At 1 mW, the effective temperature of the mode is 5.6 K when cooled from room temperature.

Fig. 6
Fig. 6

Mechanical frequency and linewidth at four different power levels (colors correspond to colors in Fig. 5(c)). The same fit parameters were used in all fitting curves, demonstrating a quality fit across multiple data sets and powers on the same device. Note that the fit to the photo-thermal-mechanical dynamics has linear power dependence, seen most clearly in the Γm dynamics (bottom panel) thus demonstrating the lack of two-photon absorption, which would have quadratic dependence.

Fig. 7
Fig. 7

(a) Fabrication process. Two SOI wafers are bonded together with an oxide-oxide bonding process, creating a sandwich structure with two thin silicon device layers in the middle. SEM image of the sandwich shown in (b). Removal of one of the handle wafers with KOH and the thick oxide layer with BOE leaves a double-device layer chip, with the two Si layers separated by a 260 nm oxide gap. E-beam lithography followed by Reactive Ion Etching of the top silicon layer and HF Vapor Etching of the thermal-oxide gap layer create the final device (last panel of (a)). (c): HFVE selectively etches at a higher rate along the oxide-oxide bond interface (red-dashed line) than it etches through the oxide layer, resulting in SiO2 residue along the Silicon surfaces.

Fig. 8
Fig. 8

(a) Force diagram demonstrating our method for counterbalancing and counteracting the upward deflection caused by the oxide residue. i. With no modifications, the bending moment M (purple arrows) caused by the undercut SiO2 (rendered in blue) etch-boundary produces a strong upward force (green arrows) on the membrane arms. ii. Etch-holes are introduced in a rectangular array at the base of the arm, forming “bridges” and changing the axis of the bending moment (M, red arrows). This results in an upward torque along the much stiffer axis which results in a smaller upward deflection of the device arms. iii. The shape of the hole array is triangular, making the bridge less stiff farther from the device arm, which results in a larger upward deflection in the back of the bridge than in the front of the bridge. The net effect of this tilt is to deflect the device arms downward (orange arrows). Devices corresponding to the diagrams in (a) are shown in (b), as well as Fig. 2 in the main text. Optical image (c) and confocal measurement of the height profile (d) taken using the optical profilometer of four devices consisting of only two support beams and the “accordion” structure meant to absorb compressive/tensile stress. The termination of the arms varies and corresponds to the net deflection of the device, as follows: i. Wide triangle (large downward deflection) ii. Narrow triangle (small downward deflection) iii. Rectangle (small upward deflection) iv. No etch holes (large upward deflection).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

F opt = U ph g O M ω ,
d a d t = κ 2 a i ( Δ + g O M x ) a + κ e ε
d 2 x d t 2 + Γ m d x d t + Ω m 2 x = g O M | a 2 | m eff ω 0
δ Ω m = Ω m g O M 2 ω 0 2 K m ( κ e 2 | ε | 2 κ 2 2 + Δ 0 2 ) 2 Δ ω 0 κ 2 2 + Δ 0 2
δ Γ = Ω m g O M 2 ω 0 2 K m ( κ e 2 | ε | 2 κ 2 2 + Δ 0 2 ) 2 Δ ω o ( κ 2 2 + Δ 0 2 ) 2 Ω m κ 2 ( κ 2 2 + Δ 0 2 )
d a d t = κ 2 a i ( Δ g O M x d ω 0 d T δ T ) a + κ e ε
d 2 x d t 2 + Γ m d x d t + Ω m 2 x = g O M | a 2 | m eff ω 0 D m eff T
d T d t = γ t h T + C t h 1 ( Γ lin + Γ T P A | a | 2 ) | a | 2
d d t δ T ( t ) = γ t h δ T ( t ) + c t h 1 Γ a b s ( a 0 δ a * ( t ) + a 0 * δ a ( t ) ) .
δ T ( ω ) = c t h 1 Γ a b s i ω + γ t h ( a 0 δ a * + a 0 * δ a ) ,
a 0 δ a * + a 0 * δ a = i | a 0 | 2 ( g O M δ x ( ω ) + d ω d T δ T ( ω ) ) × [ 1 Γ 2 + i ( ω + Δ 0 ) 1 Γ 2 + i ( ω Δ 0 ) ] .
a 0 δ a * + a 0 * δ a = i | a 0 | 2 g O M δ x ( ω ) H ( ω , Δ 0 , | a 0 | 2 )
H ( ω , Δ 0 , | a 0 | 2 ) = ( [ 1 Γ 2 + i ( ω + Δ 0 ) 1 Γ 2 + i ( ω Δ 0 ) ] 1 i | a 0 | 2 d ω d T c t h 1 Γ a b s i ω + γ t h ) 1 .
a 0 δ a * + a 0 * δ a = 1 2 g O M | a 0 | 2 ( i R [ H ( Ω m ) ] ( δ ( ω Ω m ) δ ( ω + Ω m ) ) I [ H ( Ω m ) ] ( δ ( ω Ω m ) + δ ( ω + Ω m ) ) ) ,
a 0 δ a * ( t ) + a 0 * δ a ( t ) = g O M | a 0 | 2 ( R [ H ( Ω m ) ] Ω m δ x ˙ ( t ) I [ H ( Ω m ) ] δ x ( t ) ) .
δ T ( ω ) = c t h 1 Γ a b s | a 0 | 2 g O M Ω m 2 + γ t h 2 [ ( γ t h R [ H ( Ω m ) ] Ω m I [ H ( Ω m ) ] ) δ ( ω Ω m ) δ ( ω + Ω m ) 2 i ( Ω m R [ H ( Ω m ) ] + γ t h I [ H ( Ω m ) ] ) δ ( ω Ω m ) + δ ( ω + Ω m ) 2 ] ,
δ T ( ω ) = c t h 1 Γ a b s | a 0 | 2 g O M Ω m 2 + γ t h 2 [ δ x ˙ ( t ) γ t h R [ H ( Ω m ) ] Ω m I [ H ( Ω m ) ] Ω m ] + δ x ( t ) ( Ω m R [ H ( Ω m ) ] + γ t h I [ H ( Ω m ) ] ) ] .
d 2 d t 2 δ x ( t ) + Γ m d d t δ x ( t ) + Ω m 2 δ x ( t ) = g O M m eff ω 0 ( a 0 δ a * ( t ) + a 0 * δ a ( t ) ) + D m eff δ T ( t )
δ Ω m Ω m = | a | 2 2 K m g O M L O M Im [ H ( Ω m ) ] | a | 2 2 K m g O M L P t M ( Ω m γ t h Re [ H ( Ω m ) ] + Im [ H ( Ω m ) ] )
δ Γ m Ω m = | a | 2 K m g O M L O M Re [ H ( Ω m ) ] + | a | 2 K m g O M L P t M ( Re [ H ( Ω m ) ] Ω m γ t h Im [ H ( Ω m ) ] )

Metrics