Abstract

Small-radius microring resonators with large free spectral range (FSR) are of great interest for optical communication and optical interconnect applications. The resonator loss of a waveguide-coupled ring resonator, if the gap width between the microring and the bus waveguide is extremely small, can be significantly influenced by the coupling loss which corresponds to the microring operated in a strong coupling regime. This effect is particularly prominent for small radius microrings. We have studied the coupling loss with respect to the gap width on a waveguide-coupled microring both experimentally and theoretically, using two-dimensional (2D) finite difference time domain (FDTD) and effective index method (EIM).

The coupling loss was confirmed by measuring transmission spectra of Si microring filters fabricated on silicon-on-insulator (SOI) wafers. Our experimental data show that the ring loss increases rapidly as the coupling gap decreases to less than 200 nm. The measured results show that the ring loss of a silicon microring with a radius of 2.75 μm is around 0.01382 dB/circumference as the gap width is greater than 325 nm, referred to as the intrinsic ring loss. However, for a smaller gap of 150 nm, the loss of the microring increases to 0.07084dB/circumference. The added ring loss is attributed to the coupling loss at small coupling gap for small radius ring.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
    [Crossref]
  2. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
    [Crossref]
  3. F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of μ-bends and μ-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 44, 5322–5323 (2005).
    [Crossref]
  4. B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
    [Crossref]
  5. V. R. Almeida, C. A. Barrios, and M. Lipson, “All optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref] [PubMed]
  6. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [Crossref] [PubMed]
  7. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref] [PubMed]
  8. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15, 10553–10561 (2007).
    [Crossref] [PubMed]
  9. Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
    [Crossref]
  10. F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express 14, 3872–3886 (2006).
    [Crossref] [PubMed]
  11. C. W. Tseng, C. W. Tsai, K. C. Lin, M. C. Lee, and Y. J. Chen, “Narrow gap width induced radiation loss on waveguide coupled microring,” 9th International Conference on Group IV Photonics (GFP2012), San Diego, (2012).
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Academic, Boston, MA: Artech House, 2000).
  13. B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, “Microring resonator channel dropping lter,” J. Lightwave Technol. 15, 998–1005 (1997).
    [Crossref]
  14. S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15, 11061–11072 (2007).
    [Crossref] [PubMed]
  15. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-m radius,” Opt. Express 16, 4309–4315 (2008).
    [Crossref] [PubMed]
  16. A. C. Ruege and R. M. Reano, “Multimode waveguides coupled to single mode ring resonators,” J. Lightwave Technol. 27, 2035–2043 (2009).
    [Crossref]
  17. S. Fan and W. Suh, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
    [Crossref]
  18. Z. Qiang, W. Zhou, M. Lu, and G. J. Brown, “Fano resonance enhanced infrared absorption for infrared photodetectors,” Proc. of SPIE 6901, (2008).
    [Crossref]
  19. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [Crossref] [PubMed]

2009 (2)

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
[Crossref]

A. C. Ruege and R. M. Reano, “Multimode waveguides coupled to single mode ring resonators,” J. Lightwave Technol. 27, 2035–2043 (2009).
[Crossref]

2008 (2)

Z. Qiang, W. Zhou, M. Lu, and G. J. Brown, “Fano resonance enhanced infrared absorption for infrared photodetectors,” Proc. of SPIE 6901, (2008).
[Crossref]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-m radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (1)

2005 (2)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of μ-bends and μ-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 44, 5322–5323 (2005).
[Crossref]

2004 (3)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

V. R. Almeida, C. A. Barrios, and M. Lipson, “All optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref] [PubMed]

2003 (2)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

S. Fan and W. Suh, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[Crossref]

1998 (1)

B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, “Microring resonator channel dropping lter,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, and M. Lipson, “All optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Ang, Y. L.

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of μ-bends and μ-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 44, 5322–5323 (2005).
[Crossref]

Baets, R.

K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, and M. Lipson, “All optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Bartolozzi, I.

Beausoleil, R. G.

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bienstman, P.

K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[Crossref] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Brown, G. J.

Z. Qiang, W. Zhou, M. Lu, and G. J. Brown, “Fano resonance enhanced infrared absorption for infrared photodetectors,” Proc. of SPIE 6901, (2008).
[Crossref]

Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Chen, Y. J.

C. W. Tseng, C. W. Tsai, K. C. Lin, M. C. Lee, and Y. J. Chen, “Narrow gap width induced radiation loss on waveguide coupled microring,” 9th International Conference on Group IV Photonics (GFP2012), San Diego, (2012).

Chu, S. T.

B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, “Microring resonator channel dropping lter,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Dai, D.

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
[Crossref]

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Fan, S.

Fattal, D.

Foresi, J. S.

B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, “Microring resonator channel dropping lter,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Fukazawa, T.

F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of μ-bends and μ-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 44, 5322–5323 (2005).
[Crossref]

Greene, W.

B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Academic, Boston, MA: Artech House, 2000).

Haus, H. A.

B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, “Microring resonator channel dropping lter,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

He, S.

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
[Crossref]

Ippen, E. P.

B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Khan, M. H.

Kimerling, L. C.

B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, “Microring resonator channel dropping lter,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Lee, M. C.

C. W. Tseng, C. W. Tsai, K. C. Lin, M. C. Lee, and Y. J. Chen, “Narrow gap width induced radiation loss on waveguide coupled microring,” 9th International Conference on Group IV Photonics (GFP2012), San Diego, (2012).

Lim, S. T.

Lin, K. C.

C. W. Tseng, C. W. Tsai, K. C. Lin, M. C. Lee, and Y. J. Chen, “Narrow gap width induced radiation loss on waveguide coupled microring,” 9th International Conference on Group IV Photonics (GFP2012), San Diego, (2012).

Lipson, M.

V. R. Almeida, C. A. Barrios, and M. Lipson, “All optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

little, B. E.

B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, “Microring resonator channel dropping lter,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Lu, M.

Z. Qiang, W. Zhou, M. Lu, and G. J. Brown, “Fano resonance enhanced infrared absorption for infrared photodetectors,” Proc. of SPIE 6901, (2008).
[Crossref]

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

McNab, S.

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Ohno, F.

F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of μ-bends and μ-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 44, 5322–5323 (2005).
[Crossref]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Ong, E. A.

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Png, C. E.

Qi, M.

Qiang, Z.

Z. Qiang, W. Zhou, M. Lu, and G. J. Brown, “Fano resonance enhanced infrared absorption for infrared photodetectors,” Proc. of SPIE 6901, (2008).
[Crossref]

Reano, R. M.

Ruege, A. C.

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Schacht, E.

Sekaric, L.

Shen, H.

Sheng, Z.

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Steinmeyer, G.

B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Suh, W.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Academic, Boston, MA: Artech House, 2000).

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Thoen, E. R.

B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Thourhout, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Tsai, C. W.

C. W. Tseng, C. W. Tsai, K. C. Lin, M. C. Lee, and Y. J. Chen, “Narrow gap width induced radiation loss on waveguide coupled microring,” 9th International Conference on Group IV Photonics (GFP2012), San Diego, (2012).

Tseng, C. W.

C. W. Tseng, C. W. Tsai, K. C. Lin, M. C. Lee, and Y. J. Chen, “Narrow gap width induced radiation loss on waveguide coupled microring,” 9th International Conference on Group IV Photonics (GFP2012), San Diego, (2012).

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Vlasov, Y.

Vlasov, Y. A.

Vos, K. D.

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Xia, F.

Xiao, S.

Xu, Q.

Zhou, W.

Z. Qiang, W. Zhou, M. Lu, and G. J. Brown, “Fano resonance enhanced infrared absorption for infrared photodetectors,” Proc. of SPIE 6901, (2008).
[Crossref]

Electron. Lett. (1)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15, 1406–1412 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

B. E. little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO Microring Resonator,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

J. Lightwave Technol. (2)

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, “Microring resonator channel dropping lter,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

A. C. Ruege and R. M. Reano, “Multimode waveguides coupled to single mode ring resonators,” J. Lightwave Technol. 27, 2035–2043 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

F. Ohno, T. Fukazawa, and T. Baba, “Mach-Zehnder interferometers composed of μ-bends and μ-branches in a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 44, 5322–5323 (2005).
[Crossref]

Nature (1)

V. R. Almeida, C. A. Barrios, and M. Lipson, “All optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (6)

Phys. Rev. Lett. (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Proc. of SPIE (1)

Z. Qiang, W. Zhou, M. Lu, and G. J. Brown, “Fano resonance enhanced infrared absorption for infrared photodetectors,” Proc. of SPIE 6901, (2008).
[Crossref]

Other (2)

C. W. Tseng, C. W. Tsai, K. C. Lin, M. C. Lee, and Y. J. Chen, “Narrow gap width induced radiation loss on waveguide coupled microring,” 9th International Conference on Group IV Photonics (GFP2012), San Diego, (2012).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Academic, Boston, MA: Artech House, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SEM image of a waveguide-coupled microring resonator. The bending waveguide design is to assure phase matching between the bus and ring waveguide.

Fig. 2
Fig. 2

The calibration data of gap width for an all-pass filter of radius in 2.75 μm.

Fig. 3
Fig. 3

The calculated transmission spectra of a single ring all-pass filter.

Fig. 4
Fig. 4

The transmission spectra of a single ring all-pass filter with fitting curve of CMT.

Fig. 5
Fig. 5

The relation between gap width and microring propagation loss.

Fig. 6
Fig. 6

The relation between gap width and coupling coefficient.

Fig. 7
Fig. 7

The gap induced radiation loss of a waveguide coupled microring per circumference.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d d t a ( t ) = ( j ω 0 1 τ 0 1 τ c ) a ( t ) j μ S i .
T ( ω ) = | S t S i | 2 = ( ω ω 0 ) 2 + ( 1 τ 0 1 τ c ) 2 ( ω ω 0 ) 2 + ( 1 τ 0 + 1 τ c ) 2 .
μ 2 = κ 2 v g 2 π R = 2 τ c .
2 τ 0 = α ¯ 2 v g 2 π R .
T ( λ ) = | S t | 2 | S i | 2 = | ( λ λ 0 ) | 2 + ( F S R 4 π ) 2 | ( α ¯ 2 κ 2 ) | 2 | ( λ λ 0 ) | 2 + ( F S R 4 π ) 2 | ( α ¯ 2 + κ 2 ) | 2 .

Metrics