Abstract

A low-cost and efficient photocatalytic reactor for environmental treatment and green technology was presented. ZnO nanorods firmly growing on polycarbonate optical disk substrate are generally perpendicular to the substrate as the immobilized photocatalyst of the spinning disk reactor. The photocatalytic efficiency and durability of the ZnO nanorods are effectively demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
    [CrossRef] [PubMed]
  2. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
    [CrossRef]
  3. N. L. Tarwal and P. S. Patil, “Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 256(24), 7451–7456 (2010).
    [CrossRef]
  4. L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 43004 (2010).
    [CrossRef] [PubMed]
  5. H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
    [CrossRef]
  6. M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, “TiO2 nanotubes: photocatalyst for cancer cell killing,” Phys. Status Solidi RRL 2(4), 194–196 (2008).
    [CrossRef]
  7. Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol. 77(7), 2325–2331 (2011).
    [CrossRef] [PubMed]
  8. Y. J. Jang, C. Simer, and T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue,” Mater. Res. Bull. 41(1), 67–77 (2006).
    [CrossRef]
  9. H. Q. Liu, J. X. Yang, J. H. Liang, Y. X. Huang, and C. Y. Tangz, “Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle,” J. Am. Chem. Soc. 91, 1287–1291 (2008).
  10. W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
    [CrossRef]
  11. H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
    [CrossRef]
  12. J. J. Chen, C. S. Wu, P. C. Wu, and D. P. Tsai, “Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting,” J. Phys. Chem. C 115(1), 210–216 (2011).
    [CrossRef]
  13. D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).
    [CrossRef] [PubMed]
  14. K. Okazaki, D. Nakamura, M. Higashihata, P. Iyamperumal, and T. Okada, “Lasing characteristics of an optically pumped single ZnO nanosheet,” Opt. Express 19(21), 20389–20394 (2011).
    [CrossRef] [PubMed]
  15. N. Xu, Y. Cui, Z. Hu, W. Yu, J. Sun, N. Xu, and J. Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod arrays,” Opt. Express 20(14), 14857–14863 (2012).
    [CrossRef] [PubMed]
  16. C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express 17(10), 7893–7900 (2009).
    [CrossRef] [PubMed]
  17. C.-L. Yeh, H.-R. Hsu, S.-H. Chen, and Y. Liu, “Near infrared enhancement in CIGS-based solar cells utilizing a ZnO: H window layer,” Opt. Express 20(S6), A806–A811 (2012).
    [CrossRef]
  18. J. Ahn, H. Park, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Nanostructured n-ZnO / thin film p-silicon heterojunction light-emitting diodes,” Opt. Express 19(27), 26006–26010 (2011).
    [CrossRef] [PubMed]
  19. J.-T. Chen, W.-C. Lai, C.-H. Chen, Y.-Y. Yang, J.-K. Sheu, K.-W. Lin, and L.-W. Lai, “Sputtered ZnO-SiO2 nanocomposite light-emitting diodes with flat-top nanosecond laser treatment,” Opt. Express 20(18), 19635–19642 (2012).
    [CrossRef] [PubMed]
  20. F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire,” ACS Nano 6(10), 9229–9236 (2012).
    [CrossRef] [PubMed]
  21. D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
    [CrossRef] [PubMed]
  22. P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
    [CrossRef]
  23. C. Y. Chang and N. L. Wu, “Process analysis on photocatalyzed dye decomposition for water treatment with TiO2 -coated rotating disk reactor,” Ind. Eng. Chem. Res. 49(23), 12173–12179 (2010).
    [CrossRef]
  24. C. N. Lin, C. Y. Chang, H. J. Huang, D. P. Tsai, and N. L. Wu, “Photocatalytic degradation of methyl orange by a multi-layer rotating disk reactor,” Environ. Sci. Pollut. Res. Int. 19(9), 3743–3750 (2012).
    [CrossRef] [PubMed]
  25. A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,” Catal. Today 40(1), 73–83 (1998).
    [CrossRef]
  26. K. V. K. Boodhoo and R. J. Jachuck, “Process intensification: spinning disk reactor for styrene polymerization,” Appl. Therm. Eng. 20(12), 1127–1146 (2000).
    [CrossRef]
  27. J. R. Burns and R. J. J. Jachuck, “Determination of liquid–solid mass transfer coefficients for a spinning disc reactor using a limiting current technique,” Int. J. Heat Mass Transfer 48(12), 2540–2547 (2005).
    [CrossRef]
  28. M. Vicevic, K. V. K. Boodhoo, and K. Scott, “Catalytic isomerisation of α-pinene oxide to campholenic aldehyde using silica-supported zinc triflate catalysts. II. Performance of immobilised catalysts in a continuous spinning disc reactor,” Chem. Eng. J. 133(1-3), 43–57 (2007).
    [CrossRef]
  29. D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and M. Laîné, “Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water,” Water Res. 34(11), 2927–2940 (2000).
    [CrossRef]
  30. H. C. Yatmaz, C. Wallis, and C. R. Howarth, “The spinning disc reactor-studies on a novel TiO2 photocatalytic reactor,” Chemosphere 42(4), 397–403 (2001).
    [CrossRef] [PubMed]
  31. X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
    [CrossRef] [PubMed]
  32. T. Van Gerven, G. Mul, J. Moulijn, and A. Stankiewicz, “A review of intensification of photocatalytic processes,” Chem. Eng. Prog. 46(9), 781–789 (2007).
    [CrossRef]
  33. J. Barber, “Photosynthetic energy conversion: natural and artificial,” Chem. Soc. Rev. 38(1), 185–196 (2009).
    [CrossRef] [PubMed]
  34. O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels,” Nano Lett. 9(2), 731–737 (2009).
    [CrossRef] [PubMed]
  35. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
    [CrossRef]
  36. Z. Y. Wang, H. C. Chou, C. S. Wu, D. P. Tsai, and G. Mul, “CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy,” Appl. Catal. A 380(1-2), 172–177 (2010).
    [CrossRef]
  37. P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for water treatment,” Chem. Eng. Technol. 22(3), 253–260 (1999).
    [CrossRef]
  38. The Photonics Industry & Technology Development Association, PIDA photonics market report, “Global optoelectronics market and Taiwan photonics industry report for 2011–2012” (PIDA, 2011). http://www.pida.org.tw/report/html/member/2012_Q1/2012_Q1_Ch06.pdf
  39. S. Al-Qaradawi and S. R. Salman, “Photocatalytic degradation of methyl orange as a model compound,” J. Photochem. Photobiol. Chem. 148(1-3), 161–168 (2002).
    [CrossRef]
  40. H. J. Zhou and S. S. Wong, “A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe2O3 nanostructures and nanostructured arrays,” ACS Nano 2(5), 944–958 (2008).
    [CrossRef] [PubMed]
  41. K. Y. Jung, Y. C. Kang, and S. B. Park, “Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis,” J. Mater. Sci. Lett. 16(22), 1848–1849 (1997).
    [CrossRef]
  42. C. Hariharan, “Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited,” Appl. Catal. A 304, 55–61 (2006).
    [CrossRef]
  43. S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
    [CrossRef]
  44. S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013001–0130019 (2009).
    [CrossRef]
  45. J.-M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catal. Today 53(1), 115–129 (1999).
    [CrossRef]
  46. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
    [CrossRef]
  47. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
    [CrossRef] [PubMed]
  48. Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
    [CrossRef] [PubMed]
  49. H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
    [CrossRef] [PubMed]
  50. H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
    [CrossRef] [PubMed]
  51. M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
    [CrossRef] [PubMed]
  52. L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
    [CrossRef]
  53. H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
    [CrossRef]
  54. J. J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, “Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@SiO2/TiO2 by promoted LSPR,” J. Phys. Chem. C 116(50), 26535–26542 (2012).
    [CrossRef]

2013 (1)

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[CrossRef] [PubMed]

2012 (11)

F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire,” ACS Nano 6(10), 9229–9236 (2012).
[CrossRef] [PubMed]

C. N. Lin, C. Y. Chang, H. J. Huang, D. P. Tsai, and N. L. Wu, “Photocatalytic degradation of methyl orange by a multi-layer rotating disk reactor,” Environ. Sci. Pollut. Res. Int. 19(9), 3743–3750 (2012).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

J. J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, “Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@SiO2/TiO2 by promoted LSPR,” J. Phys. Chem. C 116(50), 26535–26542 (2012).
[CrossRef]

N. Xu, Y. Cui, Z. Hu, W. Yu, J. Sun, N. Xu, and J. Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod arrays,” Opt. Express 20(14), 14857–14863 (2012).
[CrossRef] [PubMed]

J.-T. Chen, W.-C. Lai, C.-H. Chen, Y.-Y. Yang, J.-K. Sheu, K.-W. Lin, and L.-W. Lai, “Sputtered ZnO-SiO2 nanocomposite light-emitting diodes with flat-top nanosecond laser treatment,” Opt. Express 20(18), 19635–19642 (2012).
[CrossRef] [PubMed]

C.-L. Yeh, H.-R. Hsu, S.-H. Chen, and Y. Liu, “Near infrared enhancement in CIGS-based solar cells utilizing a ZnO: H window layer,” Opt. Express 20(S6), A806–A811 (2012).
[CrossRef]

2011 (10)

K. Okazaki, D. Nakamura, M. Higashihata, P. Iyamperumal, and T. Okada, “Lasing characteristics of an optically pumped single ZnO nanosheet,” Opt. Express 19(21), 20389–20394 (2011).
[CrossRef] [PubMed]

J. Ahn, H. Park, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Nanostructured n-ZnO / thin film p-silicon heterojunction light-emitting diodes,” Opt. Express 19(27), 26006–26010 (2011).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
[CrossRef]

J. J. Chen, C. S. Wu, P. C. Wu, and D. P. Tsai, “Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting,” J. Phys. Chem. C 115(1), 210–216 (2011).
[CrossRef]

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol. 77(7), 2325–2331 (2011).
[CrossRef] [PubMed]

Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[CrossRef]

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[CrossRef]

2010 (6)

Z. Y. Wang, H. C. Chou, C. S. Wu, D. P. Tsai, and G. Mul, “CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy,” Appl. Catal. A 380(1-2), 172–177 (2010).
[CrossRef]

P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
[CrossRef]

C. Y. Chang and N. L. Wu, “Process analysis on photocatalyzed dye decomposition for water treatment with TiO2 -coated rotating disk reactor,” Ind. Eng. Chem. Res. 49(23), 12173–12179 (2010).
[CrossRef]

N. L. Tarwal and P. S. Patil, “Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 256(24), 7451–7456 (2010).
[CrossRef]

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 43004 (2010).
[CrossRef] [PubMed]

D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).
[CrossRef] [PubMed]

2009 (5)

C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express 17(10), 7893–7900 (2009).
[CrossRef] [PubMed]

J. Barber, “Photosynthetic energy conversion: natural and artificial,” Chem. Soc. Rev. 38(1), 185–196 (2009).
[CrossRef] [PubMed]

O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels,” Nano Lett. 9(2), 731–737 (2009).
[CrossRef] [PubMed]

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013001–0130019 (2009).
[CrossRef]

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

2008 (3)

H. J. Zhou and S. S. Wong, “A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe2O3 nanostructures and nanostructured arrays,” ACS Nano 2(5), 944–958 (2008).
[CrossRef] [PubMed]

M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, “TiO2 nanotubes: photocatalyst for cancer cell killing,” Phys. Status Solidi RRL 2(4), 194–196 (2008).
[CrossRef]

H. Q. Liu, J. X. Yang, J. H. Liang, Y. X. Huang, and C. Y. Tangz, “Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle,” J. Am. Chem. Soc. 91, 1287–1291 (2008).

2007 (3)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[CrossRef]

T. Van Gerven, G. Mul, J. Moulijn, and A. Stankiewicz, “A review of intensification of photocatalytic processes,” Chem. Eng. Prog. 46(9), 781–789 (2007).
[CrossRef]

M. Vicevic, K. V. K. Boodhoo, and K. Scott, “Catalytic isomerisation of α-pinene oxide to campholenic aldehyde using silica-supported zinc triflate catalysts. II. Performance of immobilised catalysts in a continuous spinning disc reactor,” Chem. Eng. J. 133(1-3), 43–57 (2007).
[CrossRef]

2006 (2)

C. Hariharan, “Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited,” Appl. Catal. A 304, 55–61 (2006).
[CrossRef]

Y. J. Jang, C. Simer, and T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue,” Mater. Res. Bull. 41(1), 67–77 (2006).
[CrossRef]

2005 (1)

J. R. Burns and R. J. J. Jachuck, “Determination of liquid–solid mass transfer coefficients for a spinning disc reactor using a limiting current technique,” Int. J. Heat Mass Transfer 48(12), 2540–2547 (2005).
[CrossRef]

2003 (1)

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

2002 (1)

S. Al-Qaradawi and S. R. Salman, “Photocatalytic degradation of methyl orange as a model compound,” J. Photochem. Photobiol. Chem. 148(1-3), 161–168 (2002).
[CrossRef]

2001 (1)

H. C. Yatmaz, C. Wallis, and C. R. Howarth, “The spinning disc reactor-studies on a novel TiO2 photocatalytic reactor,” Chemosphere 42(4), 397–403 (2001).
[CrossRef] [PubMed]

2000 (2)

K. V. K. Boodhoo and R. J. Jachuck, “Process intensification: spinning disk reactor for styrene polymerization,” Appl. Therm. Eng. 20(12), 1127–1146 (2000).
[CrossRef]

D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and M. Laîné, “Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water,” Water Res. 34(11), 2927–2940 (2000).
[CrossRef]

1999 (2)

P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for water treatment,” Chem. Eng. Technol. 22(3), 253–260 (1999).
[CrossRef]

J.-M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catal. Today 53(1), 115–129 (1999).
[CrossRef]

1998 (1)

A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,” Catal. Today 40(1), 73–83 (1998).
[CrossRef]

1997 (1)

K. Y. Jung, Y. C. Kang, and S. B. Park, “Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis,” J. Mater. Sci. Lett. 16(22), 1848–1849 (1997).
[CrossRef]

1995 (1)

M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[CrossRef]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Abrams, B. L.

P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
[CrossRef]

Ahn, J.

Al-Qaradawi, S.

S. Al-Qaradawi and S. R. Salman, “Photocatalytic degradation of methyl orange as a model compound,” J. Photochem. Photobiol. Chem. 148(1-3), 161–168 (2002).
[CrossRef]

Aykol, M.

Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

Bahnemann, D. W.

M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[CrossRef]

Balasubramanian, G.

D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and M. Laîné, “Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water,” Water Res. 34(11), 2927–2940 (2000).
[CrossRef]

Barber, J.

J. Barber, “Photosynthetic energy conversion: natural and artificial,” Chem. Soc. Rev. 38(1), 185–196 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[CrossRef]

Baruah, S.

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013001–0130019 (2009).
[CrossRef]

Baudin, I.

D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and M. Laîné, “Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water,” Water Res. 34(11), 2927–2940 (2000).
[CrossRef]

Beenackers, A. A. C. M.

A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,” Catal. Today 40(1), 73–83 (1998).
[CrossRef]

Boodhoo, K. V. K.

M. Vicevic, K. V. K. Boodhoo, and K. Scott, “Catalytic isomerisation of α-pinene oxide to campholenic aldehyde using silica-supported zinc triflate catalysts. II. Performance of immobilised catalysts in a continuous spinning disc reactor,” Chem. Eng. J. 133(1-3), 43–57 (2007).
[CrossRef]

K. V. K. Boodhoo and R. J. Jachuck, “Process intensification: spinning disk reactor for styrene polymerization,” Appl. Therm. Eng. 20(12), 1127–1146 (2000).
[CrossRef]

Burns, J. R.

J. R. Burns and R. J. J. Jachuck, “Determination of liquid–solid mass transfer coefficients for a spinning disc reactor using a limiting current technique,” Int. J. Heat Mass Transfer 48(12), 2540–2547 (2005).
[CrossRef]

Chan, H. L. W.

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 43004 (2010).
[CrossRef] [PubMed]

Chan, T. S.

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
[CrossRef]

Chang, C. M.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Chang, C. Y.

C. N. Lin, C. Y. Chang, H. J. Huang, D. P. Tsai, and N. L. Wu, “Photocatalytic degradation of methyl orange by a multi-layer rotating disk reactor,” Environ. Sci. Pollut. Res. Int. 19(9), 3743–3750 (2012).
[CrossRef] [PubMed]

C. Y. Chang and N. L. Wu, “Process analysis on photocatalyzed dye decomposition for water treatment with TiO2 -coated rotating disk reactor,” Ind. Eng. Chem. Res. 49(23), 12173–12179 (2010).
[CrossRef]

Chang, H. H.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Chang, H.-C.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

Chang, S. W.

D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).
[CrossRef] [PubMed]

Chang, W. S.

H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
[CrossRef]

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

Chen, C. H.

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

Chen, C. K.

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
[CrossRef]

Chen, C.-H.

Chen, C.-J.

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

Chen, H. M.

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[CrossRef] [PubMed]

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
[CrossRef]

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

Chen, J. J.

J. J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, “Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@SiO2/TiO2 by promoted LSPR,” J. Phys. Chem. C 116(50), 26535–26542 (2012).
[CrossRef]

J. J. Chen, C. S. Wu, P. C. Wu, and D. P. Tsai, “Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting,” J. Phys. Chem. C 115(1), 210–216 (2011).
[CrossRef]

Chen, J.-T.

Chen, K. H.

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
[CrossRef]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Chen, P. H.

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

Chen, S.-H.

Chen, Y. L.

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[CrossRef] [PubMed]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Cheng, B. H.

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

Cheng, L. C.

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

Cheng, L.-C.

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

Chiang, H.-P.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Choi, W. Y.

M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[CrossRef]

Chorkendorff, I.

P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
[CrossRef]

Chou, H. C.

Z. Y. Wang, H. C. Chou, C. S. Wu, D. P. Tsai, and G. Mul, “CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy,” Appl. Catal. A 380(1-2), 172–177 (2010).
[CrossRef]

Chu, C. H.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Chu, N. N.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Chuang, S. L.

D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).
[CrossRef] [PubMed]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Cronin, S. B.

Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

Cui, Y.

Ding, Y.

F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire,” ACS Nano 6(10), 9229–9236 (2012).
[CrossRef] [PubMed]

Dionysiou, D. D.

D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and M. Laîné, “Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water,” Water Res. 34(11), 2927–2940 (2000).
[CrossRef]

Dutta, J.

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013001–0130019 (2009).
[CrossRef]

Eddy, C. R.

Erickson, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[CrossRef]

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Fu, Y. H.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Gargas, D. J.

D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).
[CrossRef] [PubMed]

Grimes, C. A.

O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels,” Nano Lett. 9(2), 731–737 (2009).
[CrossRef] [PubMed]

Hahm, J. I.

Hansen, O.

P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
[CrossRef]

Hariharan, C.

C. Hariharan, “Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited,” Appl. Catal. A 304, 55–61 (2006).
[CrossRef]

He, J.-H.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

He, Y.

Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol. 77(7), 2325–2331 (2011).
[CrossRef] [PubMed]

He, Y. J.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Henriksen, T. R.

P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
[CrossRef]

Her, L. J.

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

Herrmann, J.-M.

J.-M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catal. Today 53(1), 115–129 (1999).
[CrossRef]

Higashihata, M.

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Hite, J. K.

Ho, Y. Z.

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

Hoffmann, M. R.

M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[CrossRef]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Hou, W. B.

Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

Hou, Y.

P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
[CrossRef]

Howarth, C. R.

H. C. Yatmaz, C. Wallis, and C. R. Howarth, “The spinning disc reactor-studies on a novel TiO2 photocatalytic reactor,” Chemosphere 42(4), 397–403 (2001).
[CrossRef] [PubMed]

Hsiao, M.

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

Hsiao, M. K.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Hsu, H.-R.

Hsu, Y. Y.

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

Hu, Z.

Huang, D. W.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Huang, H. J.

C. N. Lin, C. Y. Chang, H. J. Huang, D. P. Tsai, and N. L. Wu, “Photocatalytic degradation of methyl orange by a multi-layer rotating disk reactor,” Environ. Sci. Pollut. Res. Int. 19(9), 3743–3750 (2012).
[CrossRef] [PubMed]

Huang, H. W.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Huang, J. H.

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

Huang, Y. W.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Huang, Y. X.

H. Q. Liu, J. X. Yang, J. H. Liang, Y. X. Huang, and C. Y. Tangz, “Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle,” J. Am. Chem. Soc. 91, 1287–1291 (2008).

Hwu, Y. K.

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

In, S.-I.

P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
[CrossRef]

Irwin, P. L.

Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol. 77(7), 2325–2331 (2011).
[CrossRef] [PubMed]

Iyamperumal, P.

Jachuck, R. J.

K. V. K. Boodhoo and R. J. Jachuck, “Process intensification: spinning disk reactor for styrene polymerization,” Appl. Therm. Eng. 20(12), 1127–1146 (2000).
[CrossRef]

Jachuck, R. J. J.

J. R. Burns and R. J. J. Jachuck, “Determination of liquid–solid mass transfer coefficients for a spinning disc reactor using a limiting current technique,” Int. J. Heat Mass Transfer 48(12), 2540–2547 (2005).
[CrossRef]

Jang, Y. J.

Y. J. Jang, C. Simer, and T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue,” Mater. Res. Bull. 41(1), 67–77 (2006).
[CrossRef]

Jin, T.

Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol. 77(7), 2325–2331 (2011).
[CrossRef] [PubMed]

Jung, K. Y.

K. Y. Jung, Y. C. Kang, and S. B. Park, “Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis,” J. Mater. Sci. Lett. 16(22), 1848–1849 (1997).
[CrossRef]

Kalbacova, M.

M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, “TiO2 nanotubes: photocatalyst for cancer cell killing,” Phys. Status Solidi RRL 2(4), 194–196 (2008).
[CrossRef]

Kang, Y. C.

K. Y. Jung, Y. C. Kang, and S. B. Park, “Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis,” J. Mater. Sci. Lett. 16(22), 1848–1849 (1997).
[CrossRef]

Kao, T. S.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Khodadoust, A. P.

D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and M. Laîné, “Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water,” Water Res. 34(11), 2927–2940 (2000).
[CrossRef]

Kim, J.

Kleiman-Shwarsctein, A.

P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
[CrossRef]

Kumar, N.

Lai, L.-W.

Lai, T. C.

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

Lai, T.-C.

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

Lai, W.-C.

Laîné, M.

D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and M. Laîné, “Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water,” Water Res. 34(11), 2927–2940 (2000).
[CrossRef]

Latempa, T. J.

O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels,” Nano Lett. 9(2), 731–737 (2009).
[CrossRef] [PubMed]

Lee, J. F.

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
[CrossRef]

Lee, L. F.

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

Lei, L.

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 43004 (2010).
[CrossRef] [PubMed]

Liang, J. H.

H. Q. Liu, J. X. Yang, J. H. Liang, Y. X. Huang, and C. Y. Tangz, “Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle,” J. Am. Chem. Soc. 91, 1287–1291 (2008).

Lien, W.-C.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

Lin, C. C.

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

Lin, C. N.

C. N. Lin, C. Y. Chang, H. J. Huang, D. P. Tsai, and N. L. Wu, “Photocatalytic degradation of methyl orange by a multi-layer rotating disk reactor,” Environ. Sci. Pollut. Res. Int. 19(9), 3743–3750 (2012).
[CrossRef] [PubMed]

Lin, C.-A.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

Lin, K.-W.

Lin, W. C.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Lin, Y. H.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Liu, H. Q.

H. Q. Liu, J. X. Yang, J. H. Liang, Y. X. Huang, and C. Y. Tangz, “Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle,” J. Am. Chem. Soc. 91, 1287–1291 (2008).

Liu, J.

Liu, R. S.

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[CrossRef] [PubMed]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
[CrossRef]

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

Liu, Y.

Liu, Z. W.

Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

Macak, J. M.

M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, “TiO2 nanotubes: photocatalyst for cancer cell killing,” Phys. Status Solidi RRL 2(4), 194–196 (2008).
[CrossRef]

Maier, S. A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Martin, S. T.

M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[CrossRef]

Mastro, M. A.

Mierke, C. T.

M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, “TiO2 nanotubes: photocatalyst for cancer cell killing,” Phys. Status Solidi RRL 2(4), 194–196 (2008).
[CrossRef]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Moore, M. C.

D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).
[CrossRef] [PubMed]

Moulijn, J.

T. Van Gerven, G. Mul, J. Moulijn, and A. Stankiewicz, “A review of intensification of photocatalytic processes,” Chem. Eng. Prog. 46(9), 781–789 (2007).
[CrossRef]

Mukherjee, P. S.

P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for water treatment,” Chem. Eng. Technol. 22(3), 253–260 (1999).
[CrossRef]

Mul, G.

Z. Y. Wang, H. C. Chou, C. S. Wu, D. P. Tsai, and G. Mul, “CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy,” Appl. Catal. A 380(1-2), 172–177 (2010).
[CrossRef]

T. Van Gerven, G. Mul, J. Moulijn, and A. Stankiewicz, “A review of intensification of photocatalytic processes,” Chem. Eng. Prog. 46(9), 781–789 (2007).
[CrossRef]

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[CrossRef]

Nakamura, D.

Ni, A.

D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).
[CrossRef] [PubMed]

Ohm, T.

Y. J. Jang, C. Simer, and T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue,” Mater. Res. Bull. 41(1), 67–77 (2006).
[CrossRef]

Okada, T.

Okazaki, K.

Olsen, J. L.

P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
[CrossRef]

Parab, H.

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

Park, H.

Park, S. B.

K. Y. Jung, Y. C. Kang, and S. B. Park, “Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis,” J. Mater. Sci. Lett. 16(22), 1848–1849 (1997).
[CrossRef]

Patil, P. S.

N. L. Tarwal and P. S. Patil, “Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 256(24), 7451–7456 (2010).
[CrossRef]

Paulose, M.

O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels,” Nano Lett. 9(2), 731–737 (2009).
[CrossRef] [PubMed]

Pavaskar, P.

Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Psaltis, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[CrossRef]

Ray, A. K.

P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for water treatment,” Chem. Eng. Technol. 22(3), 253–260 (1999).
[CrossRef]

A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,” Catal. Today 40(1), 73–83 (1998).
[CrossRef]

Salman, S. R.

S. Al-Qaradawi and S. R. Salman, “Photocatalytic degradation of methyl orange as a model compound,” J. Photochem. Photobiol. Chem. 148(1-3), 161–168 (2002).
[CrossRef]

Schmidt-Stein, F.

M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, “TiO2 nanotubes: photocatalyst for cancer cell killing,” Phys. Status Solidi RRL 2(4), 194–196 (2008).
[CrossRef]

Schmuki, P.

M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, “TiO2 nanotubes: photocatalyst for cancer cell killing,” Phys. Status Solidi RRL 2(4), 194–196 (2008).
[CrossRef]

Scott, K.

M. Vicevic, K. V. K. Boodhoo, and K. Scott, “Catalytic isomerisation of α-pinene oxide to campholenic aldehyde using silica-supported zinc triflate catalysts. II. Performance of immobilised catalysts in a continuous spinning disc reactor,” Chem. Eng. J. 133(1-3), 43–57 (2007).
[CrossRef]

Sheu, J.-K.

Shi, X.

Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol. 77(7), 2325–2331 (2011).
[CrossRef] [PubMed]

Simer, C.

Y. J. Jang, C. Simer, and T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue,” Mater. Res. Bull. 41(1), 67–77 (2006).
[CrossRef]

Sinton, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[CrossRef]

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Stankiewicz, A.

T. Van Gerven, G. Mul, J. Moulijn, and A. Stankiewicz, “A review of intensification of photocatalytic processes,” Chem. Eng. Prog. 46(9), 781–789 (2007).
[CrossRef]

Suidan, M. T.

D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and M. Laîné, “Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water,” Water Res. 34(11), 2927–2940 (2000).
[CrossRef]

Sun, G.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

Sun, J.

Tai, Q.

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 43004 (2010).
[CrossRef] [PubMed]

Tangz, C. Y.

H. Q. Liu, J. X. Yang, J. H. Liang, Y. X. Huang, and C. Y. Tangz, “Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle,” J. Am. Chem. Soc. 91, 1287–1291 (2008).

Tarwal, N. L.

N. L. Tarwal and P. S. Patil, “Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 256(24), 7451–7456 (2010).
[CrossRef]

Tsai, D. P.

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[CrossRef] [PubMed]

C. N. Lin, C. Y. Chang, H. J. Huang, D. P. Tsai, and N. L. Wu, “Photocatalytic degradation of methyl orange by a multi-layer rotating disk reactor,” Environ. Sci. Pollut. Res. Int. 19(9), 3743–3750 (2012).
[CrossRef] [PubMed]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

J. J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, “Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@SiO2/TiO2 by promoted LSPR,” J. Phys. Chem. C 116(50), 26535–26542 (2012).
[CrossRef]

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

J. J. Chen, C. S. Wu, P. C. Wu, and D. P. Tsai, “Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting,” J. Phys. Chem. C 115(1), 210–216 (2011).
[CrossRef]

H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
[CrossRef]

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 43004 (2010).
[CrossRef] [PubMed]

Z. Y. Wang, H. C. Chou, C. S. Wu, D. P. Tsai, and G. Mul, “CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy,” Appl. Catal. A 380(1-2), 172–177 (2010).
[CrossRef]

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Tsai, D.-S.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

Tseng, M. L.

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Van Gerven, T.

T. Van Gerven, G. Mul, J. Moulijn, and A. Stankiewicz, “A review of intensification of photocatalytic processes,” Chem. Eng. Prog. 46(9), 781–789 (2007).
[CrossRef]

Varghese, O. K.

O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels,” Nano Lett. 9(2), 731–737 (2009).
[CrossRef] [PubMed]

Vesborg, P. C. K.

P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
[CrossRef]

Vicevic, M.

M. Vicevic, K. V. K. Boodhoo, and K. Scott, “Catalytic isomerisation of α-pinene oxide to campholenic aldehyde using silica-supported zinc triflate catalysts. II. Performance of immobilised catalysts in a continuous spinning disc reactor,” Chem. Eng. J. 133(1-3), 43–57 (2007).
[CrossRef]

Wallis, C.

H. C. Yatmaz, C. Wallis, and C. R. Howarth, “The spinning disc reactor-studies on a novel TiO2 photocatalytic reactor,” Chemosphere 42(4), 397–403 (2001).
[CrossRef] [PubMed]

Wang, N.

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 43004 (2010).
[CrossRef] [PubMed]

Wang, Y.-L.

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

Wang, Z. L.

F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire,” ACS Nano 6(10), 9229–9236 (2012).
[CrossRef] [PubMed]

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[CrossRef]

C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express 17(10), 7893–7900 (2009).
[CrossRef] [PubMed]

Wang, Z. Y.

Z. Y. Wang, H. C. Chou, C. S. Wu, D. P. Tsai, and G. Mul, “CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy,” Appl. Catal. A 380(1-2), 172–177 (2010).
[CrossRef]

Wilkinson, D. P.

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[CrossRef] [PubMed]

Wong, S. S.

H. J. Zhou and S. S. Wong, “A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe2O3 nanostructures and nanostructured arrays,” ACS Nano 2(5), 944–958 (2008).
[CrossRef] [PubMed]

Wu, C. C.

H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
[CrossRef]

Wu, C. S.

J. J. Chen, C. S. Wu, P. C. Wu, and D. P. Tsai, “Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting,” J. Phys. Chem. C 115(1), 210–216 (2011).
[CrossRef]

Z. Y. Wang, H. C. Chou, C. S. Wu, D. P. Tsai, and G. Mul, “CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy,” Appl. Catal. A 380(1-2), 172–177 (2010).
[CrossRef]

Wu, C. T.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Wu, J.

Wu, J. C. S.

J. J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, “Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@SiO2/TiO2 by promoted LSPR,” J. Phys. Chem. C 116(50), 26535–26542 (2012).
[CrossRef]

Wu, N. L.

C. N. Lin, C. Y. Chang, H. J. Huang, D. P. Tsai, and N. L. Wu, “Photocatalytic degradation of methyl orange by a multi-layer rotating disk reactor,” Environ. Sci. Pollut. Res. Int. 19(9), 3743–3750 (2012).
[CrossRef] [PubMed]

C. Y. Chang and N. L. Wu, “Process analysis on photocatalyzed dye decomposition for water treatment with TiO2 -coated rotating disk reactor,” Ind. Eng. Chem. Res. 49(23), 12173–12179 (2010).
[CrossRef]

Wu, P. C.

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

J. J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, “Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@SiO2/TiO2 by promoted LSPR,” J. Phys. Chem. C 116(50), 26535–26542 (2012).
[CrossRef]

J. J. Chen, C. S. Wu, P. C. Wu, and D. P. Tsai, “Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting,” J. Phys. Chem. C 115(1), 210–216 (2011).
[CrossRef]

Xia, T.

Xie, Y.

Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol. 77(7), 2325–2331 (2011).
[CrossRef] [PubMed]

Xu, J.

Xu, N.

Xu, S.

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[CrossRef]

Yang, H.

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

Yang, J. X.

H. Q. Liu, J. X. Yang, J. H. Liang, Y. X. Huang, and C. Y. Tangz, “Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle,” J. Am. Chem. Soc. 91, 1287–1291 (2008).

Yang, K.-Y.

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

Yang, P.

D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).
[CrossRef] [PubMed]

Yang, Y.-Y.

Yatmaz, H. C.

H. C. Yatmaz, C. Wallis, and C. R. Howarth, “The spinning disc reactor-studies on a novel TiO2 photocatalytic reactor,” Chemosphere 42(4), 397–403 (2001).
[CrossRef] [PubMed]

Yeh, C.-L.

Yu, W.

Zhang, C.

Zhang, F.

F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire,” ACS Nano 6(10), 9229–9236 (2012).
[CrossRef] [PubMed]

C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, “Low-threshold two-photon pumped ZnO nanowire lasers,” Opt. Express 17(10), 7893–7900 (2009).
[CrossRef] [PubMed]

Zhang, J.

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[CrossRef] [PubMed]

Zhang, L.

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[CrossRef] [PubMed]

Zhang, X.

F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire,” ACS Nano 6(10), 9229–9236 (2012).
[CrossRef] [PubMed]

Zhang, X. M.

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[CrossRef] [PubMed]

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 43004 (2010).
[CrossRef] [PubMed]

Zhang, Y.

F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire,” ACS Nano 6(10), 9229–9236 (2012).
[CrossRef] [PubMed]

Zhang, Z.

D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).
[CrossRef] [PubMed]

Zhou, H. J.

H. J. Zhou and S. S. Wong, “A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe2O3 nanostructures and nanostructured arrays,” ACS Nano 2(5), 944–958 (2008).
[CrossRef] [PubMed]

ACS Nano (6)

F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, “Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire,” ACS Nano 6(10), 9229–9236 (2012).
[CrossRef] [PubMed]

D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, and J.-H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano 5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

H. J. Zhou and S. S. Wong, “A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe2O3 nanostructures and nanostructured arrays,” ACS Nano 2(5), 944–958 (2008).
[CrossRef] [PubMed]

H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
[CrossRef] [PubMed]

M. L. Tseng, Y. W. Huang, M. K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N. N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H.-P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[CrossRef] [PubMed]

D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4(6), 3270–3276 (2010).
[CrossRef] [PubMed]

Adv. Energy Mater. (1)

H. M. Chen, C. K. Chen, R. S. Liu, C. C. Wu, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, “A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode,” Adv. Energy Mater. 1(5), 742–747 (2011).
[CrossRef]

Adv. Mater. (1)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[CrossRef]

Appl. Catal. A (2)

C. Hariharan, “Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited,” Appl. Catal. A 304, 55–61 (2006).
[CrossRef]

Z. Y. Wang, H. C. Chou, C. S. Wu, D. P. Tsai, and G. Mul, “CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy,” Appl. Catal. A 380(1-2), 172–177 (2010).
[CrossRef]

Appl. Environ. Microbiol. (1)

Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol. 77(7), 2325–2331 (2011).
[CrossRef] [PubMed]

Appl. Surf. Sci. (1)

N. L. Tarwal and P. S. Patil, “Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique,” Appl. Surf. Sci. 256(24), 7451–7456 (2010).
[CrossRef]

Appl. Therm. Eng. (1)

K. V. K. Boodhoo and R. J. Jachuck, “Process intensification: spinning disk reactor for styrene polymerization,” Appl. Therm. Eng. 20(12), 1127–1146 (2000).
[CrossRef]

Biomicrofluidics (1)

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 43004 (2010).
[CrossRef] [PubMed]

Catal. Today (2)

A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,” Catal. Today 40(1), 73–83 (1998).
[CrossRef]

J.-M. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catal. Today 53(1), 115–129 (1999).
[CrossRef]

Chem. Eng. J. (1)

M. Vicevic, K. V. K. Boodhoo, and K. Scott, “Catalytic isomerisation of α-pinene oxide to campholenic aldehyde using silica-supported zinc triflate catalysts. II. Performance of immobilised catalysts in a continuous spinning disc reactor,” Chem. Eng. J. 133(1-3), 43–57 (2007).
[CrossRef]

Chem. Eng. Prog. (1)

T. Van Gerven, G. Mul, J. Moulijn, and A. Stankiewicz, “A review of intensification of photocatalytic processes,” Chem. Eng. Prog. 46(9), 781–789 (2007).
[CrossRef]

Chem. Eng. Technol. (1)

P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for water treatment,” Chem. Eng. Technol. 22(3), 253–260 (1999).
[CrossRef]

Chem. Rev. (1)

M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
[CrossRef]

Chem. Soc. Rev. (2)

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[CrossRef] [PubMed]

J. Barber, “Photosynthetic energy conversion: natural and artificial,” Chem. Soc. Rev. 38(1), 185–196 (2009).
[CrossRef] [PubMed]

Chemosphere (1)

H. C. Yatmaz, C. Wallis, and C. R. Howarth, “The spinning disc reactor-studies on a novel TiO2 photocatalytic reactor,” Chemosphere 42(4), 397–403 (2001).
[CrossRef] [PubMed]

Environ. Sci. Pollut. Res. Int. (1)

C. N. Lin, C. Y. Chang, H. J. Huang, D. P. Tsai, and N. L. Wu, “Photocatalytic degradation of methyl orange by a multi-layer rotating disk reactor,” Environ. Sci. Pollut. Res. Int. 19(9), 3743–3750 (2012).
[CrossRef] [PubMed]

Ind. Eng. Chem. Res. (1)

C. Y. Chang and N. L. Wu, “Process analysis on photocatalyzed dye decomposition for water treatment with TiO2 -coated rotating disk reactor,” Ind. Eng. Chem. Res. 49(23), 12173–12179 (2010).
[CrossRef]

Int. J. Heat Mass Transfer (1)

J. R. Burns and R. J. J. Jachuck, “Determination of liquid–solid mass transfer coefficients for a spinning disc reactor using a limiting current technique,” Int. J. Heat Mass Transfer 48(12), 2540–2547 (2005).
[CrossRef]

J. Am. Chem. Soc. (1)

H. Q. Liu, J. X. Yang, J. H. Liang, Y. X. Huang, and C. Y. Tangz, “Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle,” J. Am. Chem. Soc. 91, 1287–1291 (2008).

J. Mater. Chem. (1)

L. C. Cheng, J. H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R. S. Liu, M. Hsiao, C. H. Chen, L. J. Her, and D. P. Tsai, “Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent,” J. Mater. Chem. 22(5), 2244–2253 (2012).
[CrossRef]

J. Mater. Sci. Lett. (1)

K. Y. Jung, Y. C. Kang, and S. B. Park, “Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis,” J. Mater. Sci. Lett. 16(22), 1848–1849 (1997).
[CrossRef]

J. Photochem. Photobiol. Chem. (1)

S. Al-Qaradawi and S. R. Salman, “Photocatalytic degradation of methyl orange as a model compound,” J. Photochem. Photobiol. Chem. 148(1-3), 161–168 (2002).
[CrossRef]

J. Phys. Chem. C (5)

H. Parab, H. M. Chen, T. C. Lai, J. H. Huang, P. H. Chen, R. S. Liu, M. Hsiao, C. H. Chen, D. P. Tsai, and Y. K. Hwu, “Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods,” J. Phys. Chem. C 113(18), 7574–7578 (2009).
[CrossRef]

J. J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, “Improved photocatalytic activity of shell-isolated plasmonic photocatalyst Au@SiO2/TiO2 by promoted LSPR,” J. Phys. Chem. C 116(50), 26535–26542 (2012).
[CrossRef]

P. C. K. Vesborg, S.-I. In, J. L. Olsen, T. R. Henriksen, B. L. Abrams, Y. Hou, A. Kleiman-Shwarsctein, O. Hansen, and I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C 114(25), 11162–11168 (2010).
[CrossRef]

H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, L. F. Lee, and D. P. Tsai, “Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: an x-ray absorption spectroscopy approach for the electronic evolution under solar illumination,” J. Phys. Chem. C 115(44), 21971–21980 (2011).
[CrossRef]

J. J. Chen, C. S. Wu, P. C. Wu, and D. P. Tsai, “Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting,” J. Phys. Chem. C 115(1), 210–216 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate /ZnS-SiO2 /ZnO /ZnS-SiO2 /Ge2Sb2Te5 /ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Mater. Res. Bull. (1)

Y. J. Jang, C. Simer, and T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue,” Mater. Res. Bull. 41(1), 67–77 (2006).
[CrossRef]

Nano Lett. (2)

O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, “High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels,” Nano Lett. 9(2), 731–737 (2009).
[CrossRef] [PubMed]

Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 1111–1116 (2011).
[CrossRef] [PubMed]

Nano Res. (1)

S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Res. 4(11), 1013–1098 (2011).
[CrossRef]

Nat. Photonics (1)

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[CrossRef]

Nature (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Opt. Express (6)

Phys. Status Solidi RRL (1)

M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, “TiO2 nanotubes: photocatalyst for cancer cell killing,” Phys. Status Solidi RRL 2(4), 194–196 (2008).
[CrossRef]

Rep. Prog. Phys. (1)

X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[CrossRef] [PubMed]

Sci. Technol. Adv. Mater. (1)

S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10(1), 013001–0130019 (2009).
[CrossRef]

Science (1)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[CrossRef] [PubMed]

Water Res. (1)

D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and M. Laîné, “Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water,” Water Res. 34(11), 2927–2940 (2000).
[CrossRef]

Other (1)

The Photonics Industry & Technology Development Association, PIDA photonics market report, “Global optoelectronics market and Taiwan photonics industry report for 2011–2012” (PIDA, 2011). http://www.pida.org.tw/report/html/member/2012_Q1/2012_Q1_Ch06.pdf

Supplementary Material (1)

» Media 1: AVI (2901 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The photograph and schematic diagram of autoclave for hydrothermal chemical reaction.

Fig. 2
Fig. 2

The ZnO nanorods on optical disk and the SEM images of ZnO nanorod arrays on SiO2/ZnO seeded polycarbonate substrates. (a) The ZnO nanorod arrays was covered the entire surface area (43275 mm2) of the optical disk for photocatalysis. The growth of ZnO nanorods in the real picture on the disk substrate. (b) Flexibility test of the ZnO nanorod arrays on optical disk polycarbonate substrate. (c) Cross-section SEM image of ZnO nanorods grown on polycarbonate substrate. (d) Top view SEM image of the ZnO nanorod arrays. (e) Scotch-tape peeling test of the POD.

Fig. 3
Fig. 3

(a) UV/Vis absorption spectra of ZnO nanorod arrays on optical disk polycarbonate substrate. (b) X-ray diffraction pattern of the ZnO nanorods. The diffraction peak observed at around 2θ = 34° corresponds to the (002) diffraction peak of ZnO wurtzite structure (c) HR-TEM image of the single ZnO nanorod.

Fig. 4
Fig. 4

Spinning optical disk photochemical reactor. (a) The real photograph of the spinning optical reactor with the optical disk as the POD. (b) The schematic of the reactor structure. (c) Schematic diagram of the spinning optical disk reactor with immobilized ZnO photocatalysis. The Coriolis and centrifugal field result in the curvilinear motion of liquid reactants to increase the residence time of the reagents.

Fig. 5
Fig. 5

The Degradation of methyl orange (2 × 10−5 M methyl orange initial concentration) via the spinng optical disk reactor with POD. The inset diagram shows the photodecomposition of methyl orange molecules in solution over ZnO nanorods growing on optical disk under ultraviolet irradiation (λ = 254 nm). C is the concentration of methyl orange molecules at time t, and C0 is that in the methyl orange solution immediately before it is kept in the dark. (a) Photocatalytic activity of ZnO nanorods growing on the optical disk substrate. (b) The durability of zinc oxide nanorods on the optical disk was tested five cycles repeatedly. (See Media 1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ln( C 0 C )=kt

Metrics