Abstract

We propose 9-ary quadrature amplitude modulation (9-QAM) data recovery for polarization multiplexing-quadrature phase shift keying (PM-QPSK) signal in presence of strong filtering to approach Nyquist bandwidth. The decision-directed least radius distance (DD-LRD) algorithm for blind equalization is used for 9-QAM recovery and intersymbol interference (ISI) compression. It shows the robustness under strong filtering to recover 9-QAM signal rather than QPSK. We demonstrate 112 Gb/s spectrum shaped PM-QPSK signal by wavelength selective switch (WSS) in a 25-GHz channel spacing Nyquist wavelength division multiplexing (NWDM). The final equalized signal is detected by maximum likelihood sequence decision (MLSD) for data bit-error-ratio (BER) measurement. Optical signal-to-noise ratio (OSNR) tolerance is improved by 0.5 dB at a BER of 1x10−3 compared to constant modulus algorithm (CMA) plus post-filter algorithm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express20(1), 317–337 (2012).
    [CrossRef] [PubMed]
  2. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
    [CrossRef]
  3. K. Kikuchi, Y. Ishikawa, and K. Katoh, “Coherent demodulation of optical quadrature duobinary signal with spectral efficiency of 4 bit/s/Hz per polarization,” in Proceedings of ECOC2007, Berlin, Germany, paper 9.3.4 (2007).
  4. I. Lyubomirsky, “Quadrature duobinary for high-spectral efficiency 100G transmission,” J. Lightwave Technol.28(1), 91–96 (2010).
    [CrossRef]
  5. F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. deWaardt, “111-Gb/s PolMux-quadrature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technol. Lett.22(11), 751–753 (2010).
    [CrossRef]
  6. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol.30(11), 1664–1676 (2012).
    [CrossRef]
  7. J. Li, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Building up low-complexity spectrally-efficient Terabit superchannels by receiver-side duobinary shaping,” Opt. Express20(9), 10271–10282 (2012).
    [CrossRef] [PubMed]
  8. Z. Dong, J. Yu, Z. Jia, H. Chien, X. Li, and G. Chang, “7×224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
    [CrossRef]
  9. J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16QAM with a SE of 4 b/s/Hz,” J. Lightwave Technol.31(4), 515–522 (2013).
    [CrossRef]
  10. H.-C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(24), 3965–3971 (2012).
    [CrossRef]
  11. X. Xu, B. Chatelain, and D. V. Plant, “Decision directed least radius distance algorithm for blind equalization in a dual-polarization 16-QAM system,” in Proceedings of OFC2012, LA., paper OM2H (2012)
  12. M. Oderder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun.36(5), 605–612 (1988).
    [CrossRef]
  13. M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proceedings of ECOC2009, Vienna, Austria, paper P3.08 (2009).
  14. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009).
    [CrossRef]

2013 (1)

2012 (5)

2010 (3)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

I. Lyubomirsky, “Quadrature duobinary for high-spectral efficiency 100G transmission,” J. Lightwave Technol.28(1), 91–96 (2010).
[CrossRef]

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. deWaardt, “111-Gb/s PolMux-quadrature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technol. Lett.22(11), 751–753 (2010).
[CrossRef]

2009 (1)

1988 (1)

M. Oderder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun.36(5), 605–612 (1988).
[CrossRef]

Alfiad, M. S.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. deWaardt, “111-Gb/s PolMux-quadrature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technol. Lett.22(11), 751–753 (2010).
[CrossRef]

Andrekson, P. A.

Baeuerle, B.

Becker, J.

Ben-Ezra, S.

Bosco, G.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Carena, A.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Chang, G.

Z. Dong, J. Yu, Z. Jia, H. Chien, X. Li, and G. Chang, “7×224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

Chien, H.

Z. Dong, J. Yu, Z. Jia, H. Chien, X. Li, and G. Chang, “7×224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

Chien, H.-C.

Curri, V.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

deWaardt, H.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. deWaardt, “111-Gb/s PolMux-quadrature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technol. Lett.22(11), 751–753 (2010).
[CrossRef]

Dong, Z.

Dreschmann, M.

Eriksson, T.

Forghieri, F.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Freude, W.

Gunkel, M.

Hanik, N.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. deWaardt, “111-Gb/s PolMux-quadrature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technol. Lett.22(11), 751–753 (2010).
[CrossRef]

Hillerkuss, D.

Hoffmann, S.

Huebner, M.

Huo, D.

Jia, Z.

Karlsson, M.

Koos, C.

Kuschnerov, M.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. deWaardt, “111-Gb/s PolMux-quadrature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technol. Lett.22(11), 751–753 (2010).
[CrossRef]

Leuthold, J.

Li, J.

Li, X.

J. Yu, Z. Dong, H.-C. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16QAM with a SE of 4 b/s/Hz,” J. Lightwave Technol.31(4), 515–522 (2013).
[CrossRef]

Z. Dong, J. Yu, Z. Jia, H. Chien, X. Li, and G. Chang, “7×224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

Ludwig, A.

Lyubomirsky, I.

Machi, F.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. deWaardt, “111-Gb/s PolMux-quadrature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technol. Lett.22(11), 751–753 (2010).
[CrossRef]

Mayer, H.

Meyer, J.

Meyer, M.

Meyr, H.

M. Oderder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun.36(5), 605–612 (1988).
[CrossRef]

Nebendahl, B.

Noe, R.

Oderder, M.

M. Oderder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun.36(5), 605–612 (1988).
[CrossRef]

Pfau, T.

Poggiolini, P.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Schippel, A.

Schmogrow, R.

Sjödin, M.

Tipsuwannakul, E.

van den Borne, D.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. deWaardt, “111-Gb/s PolMux-quadrature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technol. Lett.22(11), 751–753 (2010).
[CrossRef]

Wagner, P.

Winter, M.

Wolf, S.

Wuth, T.

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. deWaardt, “111-Gb/s PolMux-quadrature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technol. Lett.22(11), 751–753 (2010).
[CrossRef]

Xiao, X.

Yu, J.

IEEE Photon. Technol. Lett. (3)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Z. Dong, J. Yu, Z. Jia, H. Chien, X. Li, and G. Chang, “7×224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. deWaardt, “111-Gb/s PolMux-quadrature duobinary for robust and bandwidth efficient transmission,” IEEE Photon. Technol. Lett.22(11), 751–753 (2010).
[CrossRef]

IEEE Trans. Commun. (1)

M. Oderder and H. Meyr, “Digital filter and square timing recovery,” IEEE Trans. Commun.36(5), 605–612 (1988).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (2)

Other (3)

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proceedings of ECOC2009, Vienna, Austria, paper P3.08 (2009).

K. Kikuchi, Y. Ishikawa, and K. Katoh, “Coherent demodulation of optical quadrature duobinary signal with spectral efficiency of 4 bit/s/Hz per polarization,” in Proceedings of ECOC2007, Berlin, Germany, paper 9.3.4 (2007).

X. Xu, B. Chatelain, and D. V. Plant, “Decision directed least radius distance algorithm for blind equalization in a dual-polarization 16-QAM system,” in Proceedings of OFC2012, LA., paper OM2H (2012)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simulation model.

Fig. 2
Fig. 2

Signal is sampled at the time of T (blue sample) and T/2 (red sample).

Fig. 3
Fig. 3

Constellations of the sampled signals with the filter of (a) 28-GHz and (b) 24-GHz. The blue and red dots represent the signals sampled at the time of T and T/2 respectively.

Fig. 4
Fig. 4

Constellations of (a) T samples, (b) CMA processing, (c) CMA + post-filter processing, (d) T/2 samples, (e) DD-LRD processing.

Fig. 5
Fig. 5

Measured MSE of the signals after T and T/2 sampling, DD-LRD, CMA, and CMA + post-filter proccessing

Fig. 6
Fig. 6

Experimental setup. I/Q mod.: I/Q modulator, IL: interleaver, P-MUX: polarization multiplexer, WSS: wavelength selective switch, ODL: optical delay line, OBPF: optical band-pass filter, LO: local oscillator.

Fig. 7
Fig. 7

Measured BER as a function of OSNR (0.1 nm). Inset is the spectrum of NWDM signal.

Fig. 8
Fig. 8

Constellations of the recovered signal using the algorithm of (a) standard CMA, (b) CMA + post-filter, (c) proposed 9-QAM digital processing. The blue and red figures are X- and Y- polarization recovered data respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S T/2 = S T (k)+ S T (k+1) 2 ( k=1, 2, 3, )
e(n)=y(n)( | d ^ (n) | 2 - | y(n) | 2 )
w(n)=w(n-1)+μe(n)x (n) *

Metrics