Abstract

In this work, we report the investigation of a planar waveguide in a 2D periodically-poled lithium niobate (PPLN). The waveguide is fabricated by helium (He+) implantation at 2 MeV and a fluence of 1.5 x 1016 ions/cm2. Second harmonic generation (SHG) at 532 nm using a Q-switched laser and a CW laser diode at 1064 nm, was measured as a function of angular distribution and temperature. The experimental results show higher gain in SHG conversion efficiency in the waveguide than in the bulk 2D PPLN. In particular, SHGs from 2D reciprocal lattice vectors (RLV) are observed and studied.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single pass second harmonic generation of a single-frequency tapered diode,” Opt. Express17(18), 6532–6539 (2009).
  2. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
    [CrossRef] [PubMed]
  3. L. H. Peng, C. C. Hsu, J. Ng, and A. H. Kung, “Wavelength tunability of second-harmonic generation from two dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure,” Appl. Phys. Lett.84(17), 3250–3252 (2004).
    [CrossRef]
  4. V. Berger, “Nonlinear Photonic Crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998).
    [CrossRef]
  5. M. L. Shah, “Waveguide in LiNbO3 by ion exchange techniques,” Appl. Phys. Lett.26(11), 652–653 (1975).
    [CrossRef]
  6. K. Gallo, C. Codemard, C. B. E. Gawith, J. Nilsson, P. G. R. Smith, N. G. R. Broderick, and D. J. Richardson, “Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal,” Opt. Lett.31(9), 1232–1234 (2006).
    [CrossRef] [PubMed]
  7. B. Vincent, A. Boudrioua, R. Kremer, and P. Moretti, “Second harmonic generation in helium-implanted periodically poled lithium niobate planar waveguides,” Opt. Commun.247(4-6), 461–469 (2005).
    [CrossRef]
  8. J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Second harmonic generation capabilities of ion implanted LinbO3 waveguides,” J. Appl. Opt.84, 5180–5183 (1998).
  9. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Opt.106, 081101 (2012).
  10. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
    [CrossRef]
  11. A. M. Radojevic, M. Levy, R. M. Osgood, D. H. Jundt, A. Kumar, and H. Bakhru, “Second-order optical nonlinearity of 10-μm -thick periodically poled LiNbO3 films,” Opt. Lett.25(14), 1034–1036 (2000).
    [CrossRef] [PubMed]
  12. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
    [CrossRef]
  13. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985), www.srim.org .
  14. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Int. Optical Materials29(11), 1523–1542 (2007).
    [CrossRef]
  15. L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express15(25), 16880–16885 (2007).
    [CrossRef] [PubMed]
  16. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).
  17. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt.15(1), 151–155 (1976).
    [CrossRef] [PubMed]
  18. T. Pliska, D. Fluck, P. Gunter, L. Beckers, and C. Buchal, “Mode propagation losses in He+ ion-implanted KNbO3 waveguides,” J. Opt. Soc. Am. B15(2), 628–639 (1998).
    [CrossRef]
  19. S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, D. Y. Shen, H. J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express12(5), 747–752 (2004).
    [CrossRef] [PubMed]
  20. B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y. C. Zhang, C. Hsu, and L. H. Peng, “Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation,” Appl. Phys. B89(2-3), 235–239 (2007).
    [CrossRef]

2012

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Opt.106, 081101 (2012).

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

2009

2007

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Int. Optical Materials29(11), 1523–1542 (2007).
[CrossRef]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express15(25), 16880–16885 (2007).
[CrossRef] [PubMed]

B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y. C. Zhang, C. Hsu, and L. H. Peng, “Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation,” Appl. Phys. B89(2-3), 235–239 (2007).
[CrossRef]

2006

2005

B. Vincent, A. Boudrioua, R. Kremer, and P. Moretti, “Second harmonic generation in helium-implanted periodically poled lithium niobate planar waveguides,” Opt. Commun.247(4-6), 461–469 (2005).
[CrossRef]

2004

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, D. Y. Shen, H. J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express12(5), 747–752 (2004).
[CrossRef] [PubMed]

L. H. Peng, C. C. Hsu, J. Ng, and A. H. Kung, “Wavelength tunability of second-harmonic generation from two dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure,” Appl. Phys. Lett.84(17), 3250–3252 (2004).
[CrossRef]

2000

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

A. M. Radojevic, M. Levy, R. M. Osgood, D. H. Jundt, A. Kumar, and H. Bakhru, “Second-order optical nonlinearity of 10-μm -thick periodically poled LiNbO3 films,” Opt. Lett.25(14), 1034–1036 (2000).
[CrossRef] [PubMed]

1998

V. Berger, “Nonlinear Photonic Crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998).
[CrossRef]

T. Pliska, D. Fluck, P. Gunter, L. Beckers, and C. Buchal, “Mode propagation losses in He+ ion-implanted KNbO3 waveguides,” J. Opt. Soc. Am. B15(2), 628–639 (1998).
[CrossRef]

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Second harmonic generation capabilities of ion implanted LinbO3 waveguides,” J. Appl. Opt.84, 5180–5183 (1998).

1993

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

1976

1975

M. L. Shah, “Waveguide in LiNbO3 by ion exchange techniques,” Appl. Phys. Lett.26(11), 652–653 (1975).
[CrossRef]

Andersen, P. E.

Bakhru, H.

Beckers, L.

Berger, V.

V. Berger, “Nonlinear Photonic Crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998).
[CrossRef]

Boudrioua, A.

B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y. C. Zhang, C. Hsu, and L. H. Peng, “Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation,” Appl. Phys. B89(2-3), 235–239 (2007).
[CrossRef]

B. Vincent, A. Boudrioua, R. Kremer, and P. Moretti, “Second harmonic generation in helium-implanted periodically poled lithium niobate planar waveguides,” Opt. Commun.247(4-6), 461–469 (2005).
[CrossRef]

Broderick, N. G. R.

K. Gallo, C. Codemard, C. B. E. Gawith, J. Nilsson, P. G. R. Smith, N. G. R. Broderick, and D. J. Richardson, “Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal,” Opt. Lett.31(9), 1232–1234 (2006).
[CrossRef] [PubMed]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Buchal, C.

Chandler, P. J.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Second harmonic generation capabilities of ion implanted LinbO3 waveguides,” J. Appl. Opt.84, 5180–5183 (1998).

Chen, F.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Opt.106, 081101 (2012).

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Int. Optical Materials29(11), 1523–1542 (2007).
[CrossRef]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express15(25), 16880–16885 (2007).
[CrossRef] [PubMed]

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, D. Y. Shen, H. J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express12(5), 747–752 (2004).
[CrossRef] [PubMed]

Codemard, C.

Erbert, G.

Fluck, D.

Fu, G.

Gallo, K.

Gawith, C. B. E.

Gunter, P.

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Hasler, K.-H.

Heidrich, P. F.

Hsu, C.

B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y. C. Zhang, C. Hsu, and L. H. Peng, “Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation,” Appl. Phys. B89(2-3), 235–239 (2007).
[CrossRef]

Hsu, C. C.

L. H. Peng, C. C. Hsu, J. Ng, and A. H. Kung, “Wavelength tunability of second-harmonic generation from two dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure,” Appl. Phys. Lett.84(17), 3250–3252 (2004).
[CrossRef]

Jensen, O. B.

Jundt, D. H.

Kremer, R.

B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y. C. Zhang, C. Hsu, and L. H. Peng, “Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation,” Appl. Phys. B89(2-3), 235–239 (2007).
[CrossRef]

B. Vincent, A. Boudrioua, R. Kremer, and P. Moretti, “Second harmonic generation in helium-implanted periodically poled lithium niobate planar waveguides,” Opt. Commun.247(4-6), 461–469 (2005).
[CrossRef]

Kumar, A.

Kung, A. H.

L. H. Peng, C. C. Hsu, J. Ng, and A. H. Kung, “Wavelength tunability of second-harmonic generation from two dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure,” Appl. Phys. Lett.84(17), 3250–3252 (2004).
[CrossRef]

Levy, M.

Li, S. L.

Liu, H.

Lu, Q. M.

Ma, H. J.

Moretti, P.

B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y. C. Zhang, C. Hsu, and L. H. Peng, “Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation,” Appl. Phys. B89(2-3), 235–239 (2007).
[CrossRef]

B. Vincent, A. Boudrioua, R. Kremer, and P. Moretti, “Second harmonic generation in helium-implanted periodically poled lithium niobate planar waveguides,” Opt. Commun.247(4-6), 461–469 (2005).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Ng, J.

L. H. Peng, C. C. Hsu, J. Ng, and A. H. Kung, “Wavelength tunability of second-harmonic generation from two dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure,” Appl. Phys. Lett.84(17), 3250–3252 (2004).
[CrossRef]

Nie, R.

Nilsson, J.

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Olivares, J.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Second harmonic generation capabilities of ion implanted LinbO3 waveguides,” J. Appl. Opt.84, 5180–5183 (1998).

Osgood, R. M.

Peng, L. H.

B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y. C. Zhang, C. Hsu, and L. H. Peng, “Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation,” Appl. Phys. B89(2-3), 235–239 (2007).
[CrossRef]

L. H. Peng, C. C. Hsu, J. Ng, and A. H. Kung, “Wavelength tunability of second-harmonic generation from two dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure,” Appl. Phys. Lett.84(17), 3250–3252 (2004).
[CrossRef]

Petersen, P. M.

Pliska, T.

Radojevic, A. M.

Rams, J.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Second harmonic generation capabilities of ion implanted LinbO3 waveguides,” J. Appl. Opt.84, 5180–5183 (1998).

Richardson, D. J.

K. Gallo, C. Codemard, C. B. E. Gawith, J. Nilsson, P. G. R. Smith, N. G. R. Broderick, and D. J. Richardson, “Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal,” Opt. Lett.31(9), 1232–1234 (2006).
[CrossRef] [PubMed]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Shah, M. L.

M. L. Shah, “Waveguide in LiNbO3 by ion exchange techniques,” Appl. Phys. Lett.26(11), 652–653 (1975).
[CrossRef]

Shen, D. Y.

Smith, P. G. R.

Sumpf, B.

Townsend, P. D.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Second harmonic generation capabilities of ion implanted LinbO3 waveguides,” J. Appl. Opt.84, 5180–5183 (1998).

Vincent, B.

B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y. C. Zhang, C. Hsu, and L. H. Peng, “Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation,” Appl. Phys. B89(2-3), 235–239 (2007).
[CrossRef]

B. Vincent, A. Boudrioua, R. Kremer, and P. Moretti, “Second harmonic generation in helium-implanted periodically poled lithium niobate planar waveguides,” Opt. Commun.247(4-6), 461–469 (2005).
[CrossRef]

Wang, K. M.

Wang, L.

Wang, L. L.

Wang, X. L.

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

White, J. M.

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

Zhang, Y. C.

B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y. C. Zhang, C. Hsu, and L. H. Peng, “Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation,” Appl. Phys. B89(2-3), 235–239 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

B. Vincent, R. Kremer, A. Boudrioua, P. Moretti, Y. C. Zhang, C. Hsu, and L. H. Peng, “Green light generation in a periodically poled Zn-doped LiNbO3 planar waveguide fabricated by He+ implantation,” Appl. Phys. B89(2-3), 235–239 (2007).
[CrossRef]

Appl. Phys. Lett.

M. L. Shah, “Waveguide in LiNbO3 by ion exchange techniques,” Appl. Phys. Lett.26(11), 652–653 (1975).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.62(5), 435–436 (1993).
[CrossRef]

L. H. Peng, C. C. Hsu, J. Ng, and A. H. Kung, “Wavelength tunability of second-harmonic generation from two dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure,” Appl. Phys. Lett.84(17), 3250–3252 (2004).
[CrossRef]

Int. Optical Materials

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Int. Optical Materials29(11), 1523–1542 (2007).
[CrossRef]

J. Appl. Opt.

J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Second harmonic generation capabilities of ion implanted LinbO3 waveguides,” J. Appl. Opt.84, 5180–5183 (1998).

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Opt.106, 081101 (2012).

J. Opt. Soc. Am. B

Laser Photon. Rev.

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

Opt. Commun.

B. Vincent, A. Boudrioua, R. Kremer, and P. Moretti, “Second harmonic generation in helium-implanted periodically poled lithium niobate planar waveguides,” Opt. Commun.247(4-6), 461–469 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000).
[CrossRef] [PubMed]

V. Berger, “Nonlinear Photonic Crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998).
[CrossRef]

Other

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985), www.srim.org .

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

z + and z- 2D-periodically-poled surfaces of LiNbO3 with a square lattice period of 6.92 µm revealed by chemical etching.

Fig. 2
Fig. 2

(a) The schematic geometrical reciprocal lattice for SHG interaction. (b) The normalized far-field SHG intensity angular distribution from different RLVs, in bulk at 53°C (brown trace) and 102°C (red trace) and waveguide at 53°C (dark blue trace) and 102°C (blue trace).

Fig. 3
Fig. 3

Normalized optical SHG powers vs. temperature from (a) the 2D-PPLN bulk and (b) the waveguide.

Fig. 4
Fig. 4

SHG output power vs. input power in pulsed (a) and CW regimes (b). In (b) the numerical fit results in a nonlinear conversion efficiency of 1.23%/W for the waveguide. (c) Conversion efficiency resulting from the 2D-PPLN waveguide (black points) and the bulk (red points) in CW and pulsed regimes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ 2ω = 2π | G mn | ( n 2ω (T) n ω (T) ) 2 + 4n 2ω (T)n ω (T) sin 2 θ wo 2
Θ mn (T)=arcsin[ n 2ω (T)sin[ 2arcsin [ ( λ 2ω Λ ) 2 ( m 2 + n 2 ) ( n 2ω (T) n ω (T) ) 2 4 n 2ω (T) n ω (T) ] 1/2 ] ]

Metrics