Abstract

Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths.

© 2013 OSA

Full Article  |  PDF Article

Errata

Fatih B. Atar, Enes Battal, Levent E. Aygun, Bihter Daglar, Mehmet Bayindir, and Ali K. Okyay, "Plasmonically enhanced hot electron based photovoltaic device: erratum," Opt. Express 21, 23324-23324 (2013)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-20-23324

References

  • View by:
  • |
  • |
  • |

  1. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
    [CrossRef] [PubMed]
  2. T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits,” Appl. Phys. Lett.101(7), 073905 (2012).
    [CrossRef]
  3. M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
    [CrossRef] [PubMed]
  4. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett.11(12), 5426–5430 (2011).
    [CrossRef] [PubMed]
  5. F. Wang and N. A. Melosh, “Theoretical analysis of hot electron collection in metal-insulator-metal devices,” Proc. SPIE8111, 81110O, 81110O-6 (2011).
    [CrossRef]
  6. C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
    [CrossRef]
  7. W. G. Spitzer, C. R. Crowell, and M. M. Atalla, “Mean free path of photoexcited electrons in Au,” Phys. Rev. Lett.8(2), 57–58 (1962).
    [CrossRef]
  8. J. C. Fisher and I. Giaever, “Tunneling through thin insulating layers,” J. Appl. Phys.32(2), 172–177 (1961).
    [CrossRef]
  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  10. T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, and A. A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films520(22), 6793–6802 (2012).
    [CrossRef]
  11. Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano6(4), 3390–3396 (2012).
    [CrossRef] [PubMed]
  12. C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano6(7), 6301–6307 (2012).
    [CrossRef] [PubMed]
  13. S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
    [CrossRef] [PubMed]
  14. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B110(32), 15700–15707 (2006).
    [CrossRef] [PubMed]
  15. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
    [CrossRef]
  16. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009).
    [CrossRef]

2012

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits,” Appl. Phys. Lett.101(7), 073905 (2012).
[CrossRef]

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, and A. A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films520(22), 6793–6802 (2012).
[CrossRef]

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano6(4), 3390–3396 (2012).
[CrossRef] [PubMed]

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano6(7), 6301–6307 (2012).
[CrossRef] [PubMed]

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

2011

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett.11(12), 5426–5430 (2011).
[CrossRef] [PubMed]

F. Wang and N. A. Melosh, “Theoretical analysis of hot electron collection in metal-insulator-metal devices,” Proc. SPIE8111, 81110O, 81110O-6 (2011).
[CrossRef]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

2010

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

2009

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009).
[CrossRef]

2007

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

2006

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

1962

W. G. Spitzer, C. R. Crowell, and M. M. Atalla, “Mean free path of photoexcited electrons in Au,” Phys. Rev. Lett.8(2), 57–58 (1962).
[CrossRef]

1961

J. C. Fisher and I. Giaever, “Tunneling through thin insulating layers,” J. Appl. Phys.32(2), 172–177 (1961).
[CrossRef]

Ante, F.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Atalla, M. M.

W. G. Spitzer, C. R. Crowell, and M. M. Atalla, “Mean free path of photoexcited electrons in Au,” Phys. Rev. Lett.8(2), 57–58 (1962).
[CrossRef]

Ayas, S.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Ballot, H.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Bareiß, M.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Berini, P.

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

Bright, T. J.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, and A. A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films520(22), 6793–6802 (2012).
[CrossRef]

Catchpole, K. R.

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits,” Appl. Phys. Lett.101(7), 073905 (2012).
[CrossRef]

Chang, S.-H.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano6(4), 3390–3396 (2012).
[CrossRef] [PubMed]

Chang, Y.-C.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano6(4), 3390–3396 (2012).
[CrossRef] [PubMed]

Chung, H.-C.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano6(4), 3390–3396 (2012).
[CrossRef] [PubMed]

Crowell, C. R.

W. G. Spitzer, C. R. Crowell, and M. M. Atalla, “Mean free path of photoexcited electrons in Au,” Phys. Rev. Lett.8(2), 57–58 (1962).
[CrossRef]

Dâna, A.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Dirisaglik, F.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Ekiz, O. O.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Fabel, B.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Fisher, J. C.

J. C. Fisher and I. Giaever, “Tunneling through thin insulating layers,” J. Appl. Phys.32(2), 172–177 (1961).
[CrossRef]

Giaever, I.

J. C. Fisher and I. Giaever, “Tunneling through thin insulating layers,” J. Appl. Phys.32(2), 172–177 (1961).
[CrossRef]

Güner, H.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Jegert, G.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Jirauschek, C.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Kälblein, D.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Kik, P. G.

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano6(7), 6301–6307 (2012).
[CrossRef] [PubMed]

Kimling, J.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Klauk, H.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Kotaidis, V.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Lederer, F.

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009).
[CrossRef]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Lugli, P.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Lumdee, C.

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano6(7), 6301–6307 (2012).
[CrossRef] [PubMed]

Maier, M.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Melosh, N. A.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett.11(12), 5426–5430 (2011).
[CrossRef] [PubMed]

F. Wang and N. A. Melosh, “Theoretical analysis of hot electron collection in metal-insulator-metal devices,” Proc. SPIE8111, 81110O, 81110O-6 (2011).
[CrossRef]

Muratore, C.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, and A. A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films520(22), 6793–6802 (2012).
[CrossRef]

Nelson, E. M.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Okenve, B.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Okyay, A. K.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Plech, A.

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Porod, W.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009).
[CrossRef]

Scales, C.

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

Scarpa, G.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Spitzer, W. G.

W. G. Spitzer, C. R. Crowell, and M. M. Atalla, “Mean free path of photoexcited electrons in Au,” Phys. Rev. Lett.8(2), 57–58 (1962).
[CrossRef]

Timp, G.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Toroghi, S.

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano6(7), 6301–6307 (2012).
[CrossRef] [PubMed]

Tseng, C.-B.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano6(4), 3390–3396 (2012).
[CrossRef] [PubMed]

Türker, B.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Voevodin, A. A.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, and A. A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films520(22), 6793–6802 (2012).
[CrossRef]

Wang, F.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett.11(12), 5426–5430 (2011).
[CrossRef] [PubMed]

F. Wang and N. A. Melosh, “Theoretical analysis of hot electron collection in metal-insulator-metal devices,” Proc. SPIE8111, 81110O, 81110O-6 (2011).
[CrossRef]

Wang, S.-M.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano6(4), 3390–3396 (2012).
[CrossRef] [PubMed]

Watjen, J. I.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, and A. A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films520(22), 6793–6802 (2012).
[CrossRef]

White, T. P.

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits,” Appl. Phys. Lett.101(7), 073905 (2012).
[CrossRef]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Zhang, Z. M.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, and A. A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films520(22), 6793–6802 (2012).
[CrossRef]

Zschieschang, U.

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

ACS Nano

M. Bareiß, F. Ante, D. Kälblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E. M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “High-yield transfer printing of metal-insulator-metal nanodiodes,” ACS Nano6(3), 2853–2859 (2012).
[CrossRef] [PubMed]

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano6(4), 3390–3396 (2012).
[CrossRef] [PubMed]

C. Lumdee, S. Toroghi, and P. G. Kik, “Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas,” ACS Nano6(7), 6301–6307 (2012).
[CrossRef] [PubMed]

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009).
[CrossRef]

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits,” Appl. Phys. Lett.101(7), 073905 (2012).
[CrossRef]

IEEE J. Quantum Electron.

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

J. Appl. Phys.

J. C. Fisher and I. Giaever, “Tunneling through thin insulating layers,” J. Appl. Phys.32(2), 172–177 (1961).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

J. Phys. Chem. B

J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B110(32), 15700–15707 (2006).
[CrossRef] [PubMed]

Nano Lett.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett.11(12), 5426–5430 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett.

W. G. Spitzer, C. R. Crowell, and M. M. Atalla, “Mean free path of photoexcited electrons in Au,” Phys. Rev. Lett.8(2), 57–58 (1962).
[CrossRef]

Proc. SPIE

F. Wang and N. A. Melosh, “Theoretical analysis of hot electron collection in metal-insulator-metal devices,” Proc. SPIE8111, 81110O, 81110O-6 (2011).
[CrossRef]

Science

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Thin Solid Films

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, and A. A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films520(22), 6793–6802 (2012).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The schematic view of the hot electron based photovoltaic device. Au-HfO2-Al layers form the tunneling junction, and Au NPs provide strong plasmonic field localization. (b) The top view SEM image of the completed device, showing the randomly distributed Au NPs with 50 nm diameter (bright white dots).

Fig. 2
Fig. 2

The energy band diagram of the Au-HfO2-Al MIM tunneling junction. The photoexcited hot electrons in Au diffuse towards the interface and tunnel through HfO2 to Al, generating photocurrent (internal photoemission).

Fig. 3
Fig. 3

Simulated electric field intensity profiles at wavelength λ = 590 nm. (a) Planar MIM structure without nanoparticles absorbs only a small fraction of the incoming light on the top portion of Au layer and most of the incident light is reflected from Au surface. (b) The incident light excites localized surface plasmons on Au nanoparticle which couple to the dark modes at metal-insulator interfaces.

Fig. 4
Fig. 4

Absorption spectrum of the synthesized Au nanoparticles in de-ionized water solution. NPs exhibit resonance at around 530 nm wavelength.

Fig. 5
Fig. 5

(a) Measured responsivity of the device before and after nanoparticle spinning. The inset plots the responsivity ratio of the two measurements. The device with nanoparticles clearly shows resonant enhancement at 700 nm wavelength. (b) Absorption enhancement in the Au layer due to NPs, calculated with the FDTD simulation results.

Metrics