Abstract

A new technique to investigate the spatial distribution of the reflection spectrum along fabricated long weak fiber Bragg gratings (FBG) is experimentally demonstrated, together with its potential applications for distributed fiber sensing and broadband signal processing. A short pulsed coherent light signal is launched into a FBG and the signal frequency is scanned through the FBG reflection spectrum. When the pulse duration is set much shorter than the transit time through the grating a time-resolved reflected signal can be obtained for each signal frequency. It informs about the distribution of the refractive index periodic perturbation along the entire FBG length, hence the uniformity or frequency chirp information of the fabricated FBG. This technique has been implemented to demonstrate a distributed temperature sensing system with high spatial resolution and to also realize a robust all-fiber tunable delay line for broadband signals.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
    [CrossRef]
  2. W. F. Liu, I. M. Liu, L. W. Chung, D. W. Huang, and C. C. Yang, “Acoustic-induced switching of the reflection wavelength in a fiber Bragg grating,” Opt. Lett.25(18), 1319–1321 (2000).
    [CrossRef] [PubMed]
  3. J. Azaña, “Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator,” Opt. Lett.33(1), 4–6 (2008).
    [CrossRef] [PubMed]
  4. I. Littler, M. Rochette, and B. Eggleton, “Adjustable bandwidth dispersionless bandpass FBG optical filter,” Opt. Express13(9), 3397–3407 (2005).
    [CrossRef] [PubMed]
  5. M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
    [CrossRef]
  6. H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, “Distributed strain measurement with high spatial resolution using fiber Bragg gratings and optical frequency domain reflectometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE40.
  7. K. Hotate and K. Kajiwara, “Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function,” Opt. Express16(11), 7881–7887 (2008).
    [CrossRef] [PubMed]
  8. L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
    [CrossRef]
  9. J. Azaña and M. A. Muriel, “Study of optical pulses-fiber gratings interaction by means of joint time-frequency signal representations,” J. Lightwave Technol.21(11), 2931–2941 (2003).
    [CrossRef]
  10. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett.13(1), 56–58 (1988).
    [CrossRef] [PubMed]
  11. L. Thévenaz and M. A. Soto, “Rating the performance of a Brillouin distributed fiber sensor,” 22ndOFS2012, Proc. SPIE 8421, 8421A7 (2012).
  12. S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” Sensors Journal, IEEE12(1), 189–194 (2012).
    [CrossRef]
  13. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett.31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  14. L. Thevenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE 7753, 21st International Conference on Optical Fiber Sensors, 775322 (2011).
    [CrossRef]
  15. M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep.523(4), 207–229 (2013).
    [CrossRef]

2013 (1)

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep.523(4), 207–229 (2013).
[CrossRef]

2012 (1)

S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” Sensors Journal, IEEE12(1), 189–194 (2012).
[CrossRef]

2008 (2)

2006 (1)

2005 (1)

2003 (1)

2000 (1)

1997 (3)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
[CrossRef]

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

1988 (1)

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Azaña, J.

Benjamin, S. D.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

Chen, L. R.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

Chin, S.

S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” Sensors Journal, IEEE12(1), 189–194 (2012).
[CrossRef]

Chung, L. W.

Dakin, J. P.

M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Doran, N. J.

Eggleton, B.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Geiger, H.

M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
[CrossRef]

He, Z.

Hotate, K.

Huang, D. W.

Kajiwara, K.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Lancry, M.

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep.523(4), 207–229 (2013).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Littler, I.

Liu, I. M.

Liu, W. F.

Muriel, M. A.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Poumellec, B.

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep.523(4), 207–229 (2013).
[CrossRef]

Primerov, N.

S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” Sensors Journal, IEEE12(1), 189–194 (2012).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Rochette, M.

Sipe, J. E.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

Smith, P. W. E.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

Song, K. Y.

Thevenaz, L.

S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” Sensors Journal, IEEE12(1), 189–194 (2012).
[CrossRef]

Volanthen, M.

M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
[CrossRef]

Wood, D.

Yang, C. C.

J. Lightwave Technol. (4)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
[CrossRef]

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

J. Azaña and M. A. Muriel, “Study of optical pulses-fiber gratings interaction by means of joint time-frequency signal representations,” J. Lightwave Technol.21(11), 2931–2941 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rep. (1)

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep.523(4), 207–229 (2013).
[CrossRef]

Sensors Journal, IEEE (1)

S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” Sensors Journal, IEEE12(1), 189–194 (2012).
[CrossRef]

Other (3)

L. Thevenaz, S. Foaleng Mafang, and J. Lin, “Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors,” Proc. SPIE 7753, 21st International Conference on Optical Fiber Sensors, 775322 (2011).
[CrossRef]

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, “Distributed strain measurement with high spatial resolution using fiber Bragg gratings and optical frequency domain reflectometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE40.

L. Thévenaz and M. A. Soto, “Rating the performance of a Brillouin distributed fiber sensor,” 22ndOFS2012, Proc. SPIE 8421, 8421A7 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of operation principle to characterize optical properties of a long and weak FBG in distributed manner. (b) Time-frequency response of the FBG.

Fig. 2
Fig. 2

Schematic diagram of operation principle to characterize optical properties of a long and weak FBG in distributed manner when a hot spot is inserted. (b) Time-frequency response of the FBG.

Fig. 3
Fig. 3

Numerical simulation result of 3D-distribution of the FBG spectrum along a 10 cm-long weak FBG (a) when the grating is uniform (b) in the presence of a 5 mm-long hot spot.

Fig. 4
Fig. 4

Experimental layout to measure the distributed reflection spectrum of a 10 cm-long FBG with overall reflectivity of 35%.

Fig. 5
Fig. 5

(a) Measured 3D-map of the reflected power of the FBG with no change in temperature and strain along the FBG and (b) distribution of the FBG central frequency.

Fig. 6
Fig. 6

(a) 3D mapping of the experimental measurements when a 8 mm hot piece of metal is inserted near the beginning of the FBG (b) FBG central frequency distribution.

Fig. 7
Fig. 7

(a) 20 acquisitions of the grating central frequency distribution when the grating is maintained under constant temperature. (b) Standard deviation of the grating central frequency distribution at room temperature.

Fig. 8
Fig. 8

(a) Spectrogram of the FBG distributed measurement while moving the 5 mm hot spot along the grating. (b) Time waveforms of the delayed signal pulses.

Metrics