Abstract

We demonstrate an experimental study of the chromatic dispersion properties for a series of microstructured fibers (MSFs) dedicated for a supercontinuum generation. With white-light interferometry application we analyze experimentally how the small variations of structural parameters, i.e. an air-hole diameter and a lattice constant, influence dispersion characteristics in different groups of MSFs. Our study provides useful information on how to design the fiber which is less sensitive to the fabrication imperfections. Moreover those investigations are the initial step to the development of the customized or tunable supercontinuum light sources based on MSFs with slightly changed structural parameters which can generate light with a different spectrum range, adapted to a proper application.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibres (Cambridge University Press, 2010), pp. 32–96.
  2. Y. London and D. Sadot, “Nonlinear effects mitigation in coherent optical OFDM system in presence of high peak power,” J. Lightwave Technol. 29(21), 3275–3281 (2011).
    [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  4. J. Laegsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic band-gap fibers,” Opt. Express 16(13), 9628–9644 (2008).
    [CrossRef] [PubMed]
  5. C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11(22), 2832–2837 (2003).
    [CrossRef] [PubMed]
  6. H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004).
    [CrossRef] [PubMed]
  7. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
    [CrossRef] [PubMed]
  8. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999).
  9. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
    [CrossRef]
  10. A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9(13), 687–697 (2001).
    [CrossRef] [PubMed]
  11. W. Reeves, J. Knight, P. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002).
    [CrossRef] [PubMed]
  12. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss,” Opt. Express 9(13), 681–686 (2001).
    [CrossRef] [PubMed]
  13. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25(11), 790–792 (2000).
    [CrossRef] [PubMed]
  14. P. Hlubina and J. Olszewski, “Phase retrieval from spectral interferograms including astationary-phase point,” Opt. Commun. 285(24), 4733–4738 (2012).
    [CrossRef]
  15. P. Lu, H. Ding, and S. J. Mihailov, “Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry,” Meas. Sci. Technol. 16(8), 1631–1636 (2005).
    [CrossRef]
  16. L. Thevenaz, J.-P. Pellaux, and J.-P. Weid, “All-fibre interferometer for chromatic dispersion measurements,” J. Lightwave Technol. 6(1), 1–7 (1988).
    [CrossRef]
  17. P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fibre,” J. Lightwave Technol. 7(4), 703–716 (1989).
    [CrossRef]
  18. S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fibre,” Laser Phys. 21(5), 945–947 (2011).
    [CrossRef]
  19. P. Peterka, J. Ka?ka, P. Honzátko, and D. Ká?ik, “Measurement of chromatic dispersion of microstructure optical fibres using interferometric method,” Appl. Opt. 38(2), 295–303 (2008).
  20. M. A. Galle, W. S. Mohammed, L. Qian, and P. W. E. Smith, “Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber,” Opt. Express 15(25), 16896–16908 (2007).
    [CrossRef] [PubMed]
  21. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–7540 (2005).
    [CrossRef] [PubMed]
  22. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13(10), 3728–3736 (2005).
    [CrossRef] [PubMed]
  23. P. Hlubina, M. Kadulov’a, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Europ. Opt. Soc. Rap. Public. 7, 12–17 (2012).
    [CrossRef]
  24. S. M. Kay, Intuitive probability and random processes using matlab (University of Rhode Island, 2006), pp. 13–365.
  25. http://www.lumerical.com/tcad-products/mode/ (website consulted in December 2012).
  26. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
    [CrossRef] [PubMed]
  27. http://www.corning.com/docs/opticalfiber/pi1463.pdf (website consulted in December 2012).
  28. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12(19), 4614–4624 (2004).
    [CrossRef] [PubMed]

2012

P. Hlubina and J. Olszewski, “Phase retrieval from spectral interferograms including astationary-phase point,” Opt. Commun. 285(24), 4733–4738 (2012).
[CrossRef]

P. Hlubina, M. Kadulov’a, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Europ. Opt. Soc. Rap. Public. 7, 12–17 (2012).
[CrossRef]

2011

S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fibre,” Laser Phys. 21(5), 945–947 (2011).
[CrossRef]

Y. London and D. Sadot, “Nonlinear effects mitigation in coherent optical OFDM system in presence of high peak power,” J. Lightwave Technol. 29(21), 3275–3281 (2011).
[CrossRef]

2008

J. Laegsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic band-gap fibers,” Opt. Express 16(13), 9628–9644 (2008).
[CrossRef] [PubMed]

P. Peterka, J. Ka?ka, P. Honzátko, and D. Ká?ik, “Measurement of chromatic dispersion of microstructure optical fibres using interferometric method,” Appl. Opt. 38(2), 295–303 (2008).

2007

2005

2004

2003

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11(22), 2832–2837 (2003).
[CrossRef] [PubMed]

2002

2001

2000

1999

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999).

1989

P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fibre,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

1988

L. Thevenaz, J.-P. Pellaux, and J.-P. Weid, “All-fibre interferometer for chromatic dispersion measurements,” J. Lightwave Technol. 6(1), 1–7 (1988).
[CrossRef]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Ahmad, H.

S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fibre,” Laser Phys. 21(5), 945–947 (2011).
[CrossRef]

Andres, M.

Andres, P.

Andrés, P.

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

Bang, O.

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999).

Broderick, N. G. R.

Broeng, J.

Brown, T.

Ciprian, D.

P. Hlubina, M. Kadulov’a, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Europ. Opt. Soc. Rap. Public. 7, 12–17 (2012).
[CrossRef]

de Matos, C.

Ding, H.

P. Lu, H. Ding, and S. J. Mihailov, “Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry,” Meas. Sci. Technol. 16(8), 1631–1636 (2005).
[CrossRef]

Falk, P.

Ferrando, A.

Finazzi, V.

Frosz, M. H.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Galle, M. A.

Gander, M. J.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999).

Genty, G.

Hansen, K.

Hansen, T.

Harun, S. W.

S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fibre,” Laser Phys. 21(5), 945–947 (2011).
[CrossRef]

Hasegawa, T.

Hlubina, P.

P. Hlubina, M. Kadulov’a, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Europ. Opt. Soc. Rap. Public. 7, 12–17 (2012).
[CrossRef]

P. Hlubina and J. Olszewski, “Phase retrieval from spectral interferograms including astationary-phase point,” Opt. Commun. 285(24), 4733–4738 (2012).
[CrossRef]

Honzátko, P.

P. Peterka, J. Ka?ka, P. Honzátko, and D. Ká?ik, “Measurement of chromatic dispersion of microstructure optical fibres using interferometric method,” Appl. Opt. 38(2), 295–303 (2008).

Jackson, D. A.

P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fibre,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

Jones, J. D. C.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999).

Kácik, D.

P. Peterka, J. Ka?ka, P. Honzátko, and D. Ká?ik, “Measurement of chromatic dispersion of microstructure optical fibres using interferometric method,” Appl. Opt. 38(2), 295–303 (2008).

Kadulov’a, M.

P. Hlubina, M. Kadulov’a, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Europ. Opt. Soc. Rap. Public. 7, 12–17 (2012).
[CrossRef]

Kanka, J.

P. Peterka, J. Ka?ka, P. Honzátko, and D. Ká?ik, “Measurement of chromatic dispersion of microstructure optical fibres using interferometric method,” Appl. Opt. 38(2), 295–303 (2008).

Knight, J.

Knight, J. C.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999).

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Koshiba, M.

Laegsgaard, J.

Lehtonen, M.

Lim, H.

Lim, K. S.

S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fibre,” Laser Phys. 21(5), 945–947 (2011).
[CrossRef]

London, Y.

Lu, P.

P. Lu, H. Ding, and S. J. Mihailov, “Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry,” Meas. Sci. Technol. 16(8), 1631–1636 (2005).
[CrossRef]

Ludvigsen, H.

McBride, R.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999).

Merritt, P.

P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fibre,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

Mihailov, S. J.

P. Lu, H. Ding, and S. J. Mihailov, “Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry,” Meas. Sci. Technol. 16(8), 1631–1636 (2005).
[CrossRef]

Miret, J.

Miret, J. J.

Mogilevtsev, D.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999).

Mohammed, W. S.

Monro, T. M.

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Nishimura, M.

Olszewski, J.

P. Hlubina and J. Olszewski, “Phase retrieval from spectral interferograms including astationary-phase point,” Opt. Commun. 285(24), 4733–4738 (2012).
[CrossRef]

Onishi, M.

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Pellaux, J.-P.

L. Thevenaz, J.-P. Pellaux, and J.-P. Weid, “All-fibre interferometer for chromatic dispersion measurements,” J. Lightwave Technol. 6(1), 1–7 (1988).
[CrossRef]

Peterka, P.

P. Peterka, J. Ka?ka, P. Honzátko, and D. Ká?ik, “Measurement of chromatic dispersion of microstructure optical fibres using interferometric method,” Appl. Opt. 38(2), 295–303 (2008).

Poletti, F.

Qian, L.

Ranka, J. K.

Reeves, W.

Richardson, D. J.

Roberts, P.

Roberts, P. J.

Russell, P.

W. Reeves, J. Knight, P. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

Russell, P. S. J.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999).

Sadot, D.

Sasaoka, E.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Silvestre, E.

Smith, P. W. E.

Stentz, A. J.

Tatam, R. P.

P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fibre,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

Taylor, J.

Thevenaz, L.

L. Thevenaz, J.-P. Pellaux, and J.-P. Weid, “All-fibre interferometer for chromatic dispersion measurements,” J. Lightwave Technol. 6(1), 1–7 (1988).
[CrossRef]

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Tse, V.

Tsuji, Y.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

Weid, J.-P.

L. Thevenaz, J.-P. Pellaux, and J.-P. Weid, “All-fibre interferometer for chromatic dispersion measurements,” J. Lightwave Technol. 6(1), 1–7 (1988).
[CrossRef]

Windeler, R. S.

Wise, F.

Zhu, Z.

Appl. Opt.

P. Peterka, J. Ka?ka, P. Honzátko, and D. Ká?ik, “Measurement of chromatic dispersion of microstructure optical fibres using interferometric method,” Appl. Opt. 38(2), 295–303 (2008).

Electron. Lett.

M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999).

IEEE Photon. Technol. Lett.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12(7), 807–809 (2000).
[CrossRef]

J. Europ. Opt. Soc. Rap. Public.

P. Hlubina, M. Kadulov’a, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Europ. Opt. Soc. Rap. Public. 7, 12–17 (2012).
[CrossRef]

J. Lightwave Technol.

L. Thevenaz, J.-P. Pellaux, and J.-P. Weid, “All-fibre interferometer for chromatic dispersion measurements,” J. Lightwave Technol. 6(1), 1–7 (1988).
[CrossRef]

P. Merritt, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fibre,” J. Lightwave Technol. 7(4), 703–716 (1989).
[CrossRef]

Y. London and D. Sadot, “Nonlinear effects mitigation in coherent optical OFDM system in presence of high peak power,” J. Lightwave Technol. 29(21), 3275–3281 (2011).
[CrossRef]

Laser Phys.

S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fibre,” Laser Phys. 21(5), 945–947 (2011).
[CrossRef]

Meas. Sci. Technol.

P. Lu, H. Ding, and S. J. Mihailov, “Direct measurement of the zero-dispersion wavelength of tapered fibres using broadband-light interferometry,” Meas. Sci. Technol. 16(8), 1631–1636 (2005).
[CrossRef]

Opt. Commun.

P. Hlubina and J. Olszewski, “Phase retrieval from spectral interferograms including astationary-phase point,” Opt. Commun. 285(24), 4733–4738 (2012).
[CrossRef]

Opt. Express

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss,” Opt. Express 9(13), 681–686 (2001).
[CrossRef] [PubMed]

A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9(13), 687–697 (2001).
[CrossRef] [PubMed]

W. Reeves, J. Knight, P. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10(14), 609–613 (2002).
[CrossRef] [PubMed]

Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002).
[CrossRef] [PubMed]

C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11(22), 2832–2837 (2003).
[CrossRef] [PubMed]

H. Lim and F. Wise, “Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber,” Opt. Express 12(10), 2231–2235 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12(19), 4614–4624 (2004).
[CrossRef] [PubMed]

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13(10), 3728–3736 (2005).
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–7540 (2005).
[CrossRef] [PubMed]

M. A. Galle, W. S. Mohammed, L. Qian, and P. W. E. Smith, “Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber,” Opt. Express 15(25), 16896–16908 (2007).
[CrossRef] [PubMed]

J. Laegsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic band-gap fibers,” Opt. Express 16(13), 9628–9644 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Science

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Other

J. M. Dudley and J. R. Taylor, Supercontinuum generation in optical fibres (Cambridge University Press, 2010), pp. 32–96.

S. M. Kay, Intuitive probability and random processes using matlab (University of Rhode Island, 2006), pp. 13–365.

http://www.lumerical.com/tcad-products/mode/ (website consulted in December 2012).

http://www.corning.com/docs/opticalfiber/pi1463.pdf (website consulted in December 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

CD measurement setup employing white-light Michelson interferometer (FUT – fiber under test, VOA – variable optical attenuator, BS – beam splitter).

Fig. 2
Fig. 2

Fringe pattern obtained forSMF-28. Dashed region shows the region of the interferogram which is used for the analysis of the CD.

Fig. 3
Fig. 3

Phase diagram for λ0 = 1550nmfitted by the third order polynomial (solid line). nπ indicates the phase difference between reference and signal path in a function of ω-ω0.

Fig. 4
Fig. 4

The results of a CD measurement (points) compared with Corning catalogue data for SMF-28.

Fig. 5
Fig. 5

Scanning electron microscope image of one of the fabricated MSFs (the fiber C3 specifically) (a) and its image imported to the Lumerical MODE Solution software (b).

Fig. 6
Fig. 6

Chromatic dispersion measurements (markers) and simulations (lines) of fiber groups: A, B, C and D.

Fig. 7
Fig. 7

Relative changes of d and Λ for two fibers from one of the fiber group: A, B, C and D. The pairs of fibers with similar changes are grouped into classes I, II and III.

Fig. 8
Fig. 8

The calculated change of CD (ΔD) caused by the structural parameter variations for the class (a) I, (b) II and (c) III, as defined in Fig. 7.

Fig. 9
Fig. 9

Normalized MFD of fibers C1, C3, D1, D3. MFD1060 indicates the MFD of a given fiber at the wavelength of 1060 nm.

Fig. 10
Fig. 10

ZDW for the investigated MSFs, extracted from the measurement results. The horizontal line represents the wavelength of a pump source, which is meant to be used to generate the SC in these MSFs.

Fig. 11
Fig. 11

The difference of a measured value of the CD (Dm) and the mean value of all runs of Monte-Carlo simulation (Ds) as a function of wavelength. Error bars represent the standard deviation of Monte-Carlo results.

Tables (1)

Tables Icon

Table1 Structural Parameters of Tested MSFs

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I( ω )= | E s ( ω )+ E r ( ω ) | 2 1+cos( ϕ( ω ) )
φ( ω )= β s L β r L 0
ϕ( λ )= ϕ 0 +[ β 1 ( ω 0 )L L 0 c ]( 2πc λ 2πc λ 0 )+ 1 2 β 2 ( ω 0 )L ( 2πc λ 2πc λ 0 ) 2 + 1 6 β 3 ( ω 0 )L ( 2πc λ 2πc λ 0 ) 3 +...
D= 2πc λ 2 β 2
y= A 0 x+ A 2 x 2 + A 3 x 3
β 2 ( ω 0 )= 2 A 2 L

Metrics