Abstract

Three-dimensional (3D) measurements are highly desirable both for fundamental combustion research and practical monitoring and control of combustion systems. This work discusses a 3D diagnostic based on tomographic chemiluminescence (TC) to address this measurement need. The major contributions of this work are threefold. First, a hybrid algorithm is developed to solve the 3D TC problem. The algorithm was demonstrated in extensive tests, both numerical and experimental, to yield 3D reconstruction with high fidelity. Second, an experimental approach was designed to enable quantifiable metrics for examining key aspects of the 3D TC technique, including its spatial resolution and reconstruction accuracy. Third, based on the reconstruction algorithm and experimental results, we investigated the effects of the view orientations. The results suggested that for an unknown flame, it is better to use projections measured from random orientations than restricted orientations (e.g., coplanar orientations). These findings are expected to provide insights to the fundamental capabilities of the TC technique, and also to facilitate its practical application.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kohse-Hoinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, 1996).
  3. Y. Hardalupas, C. S. Panoutsos, and A. M. K. P. Taylor, “Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor,” Exp. Fluids49(4), 883–909 (2010).
    [CrossRef]
  4. M. Orain and Y. Hardalupas, “Measurements of local mixture fraction of reacting mixture in swirl-stabilised natural gas-fuelled burners,” Appl. Phys. B105(2), 435–449 (2011).
    [CrossRef]
  5. Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
    [CrossRef]
  6. Y. Zhao, C. Tong, and L. Ma, “Demonstration of a new laser diagnostic based on photodissociation spectroscopy for imaging mixture fraction in a non-premixed jet flame,” Appl. Spectrosc.64(4), 377–383 (2010).
    [CrossRef] [PubMed]
  7. J. A. Sutton and J. F. Driscoll, “A method to simultaneously image two-dimensional mixture fraction, scalar dissipation rate, temperature and fuel consumption rate fields in a turbulent non-premixed jet flame,” Exp. Fluids41(4), 603–627 (2006).
    [CrossRef]
  8. B. O. Ayoolan, R. Balachandran, J. H. Frank, E. Mastorakos, and C. F. Kaminski, “Spatially resolved heat release rate measurements in turbulent premixed flames,” Combust. Flame144(1-2), 1–16 (2006).
    [CrossRef]
  9. S. Bockle, J. Kazenwadel, T. Kunzelmann, D. I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst.28(1), 279–286 (2000).
    [CrossRef]
  10. N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH* chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B100(3), 675–694 (2010).
    [CrossRef]
  11. Y. Ikeda, J. Kojima, and H. Hashimoto, “Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame,” Proc. Combust. Inst.29(2), 1495–1501 (2002).
    [CrossRef]
  12. J. Kojima, Y. Ikeda, and T. Nakajima, “Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames,” Combust. Flame140(1-2), 34–45 (2005).
    [CrossRef]
  13. H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame113(3), 312–332 (1998).
    [CrossRef]
  14. K. Nakabe, Y. Mizutani, T. Hirao, and H. Fujioka, “An experimental study on detailed flame structure of liquid fuel sprays with and without gaseous fuel,” Combust. Flame84(1-2), 3–14 (1991).
    [CrossRef]
  15. J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
    [CrossRef]
  16. Y. Hardalupas and M. Orain, “Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame,” Combust. Flame139(3), 188–207 (2004).
    [CrossRef]
  17. J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
    [CrossRef]
  18. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A1(6), 612–619 (1984).
    [CrossRef]
  19. G. W. Faris and R. L. Byer, “Beam-deflection optical tomography of a flame,” Opt. Lett.12(3), 155–157 (1987).
    [CrossRef] [PubMed]
  20. Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. Ser. B48(1), 34–40 (2005).
    [CrossRef]
  21. N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B-Lasers and Opt.100(3), 675–694 (2010).
    [CrossRef]
  22. M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas.61(5), 1417–1425 (2012).
    [CrossRef]
  23. J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3D measurements of a matrix burner,” Proc. Combust. Inst.33(1), 751–758 (2011).
    [CrossRef]
  24. C. T. Herman, Image Reconstruction from Projections - The Fundamentals of Computerized Tomography (Academic Press, 1980).
  25. X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt.50(4), A29–A37 (2011).
    [CrossRef] [PubMed]
  26. L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express17(10), 8602–8613 (2009).
    [CrossRef] [PubMed]
  27. Q. Huang, F. Wang, J. Yan, and Y. Chi, “Simultaneous estimation of the 3D soot temperature and volume fraction distributions in asymmetric flames using high-speed stereoscopic images,” Appl. Opt.51(15), 2968–2978 (2012).
    [CrossRef] [PubMed]
  28. L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt.47(21), 3751–3759 (2008).
    [CrossRef] [PubMed]
  29. L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt.47(23), 4186–4192 (2008).
    [CrossRef] [PubMed]
  30. E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. XRay Sci. Technol.14, 119–139 (2006).
  31. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, 1992).
  32. R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. Lond. A Math. Phys. Sci.317(1530), 319–340 (1970).
    [CrossRef]
  33. H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging13(4), 601–609 (1994).
    [CrossRef] [PubMed]
  34. W. Cai, D. J. Ewing, and L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput.217(12), 5754–5767 (2011).
    [CrossRef]
  35. W. Cai and L. Ma, “Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows,” Appl. Opt.49(4), 601–610 (2010).
    [CrossRef] [PubMed]
  36. D. S. Nobes, B. Wieneke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng.43(2), 407–414 (2004).
    [CrossRef]

2012 (2)

2011 (4)

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt.50(4), A29–A37 (2011).
[CrossRef] [PubMed]

W. Cai, D. J. Ewing, and L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput.217(12), 5754–5767 (2011).
[CrossRef]

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3D measurements of a matrix burner,” Proc. Combust. Inst.33(1), 751–758 (2011).
[CrossRef]

M. Orain and Y. Hardalupas, “Measurements of local mixture fraction of reacting mixture in swirl-stabilised natural gas-fuelled burners,” Appl. Phys. B105(2), 435–449 (2011).
[CrossRef]

2010 (5)

Y. Hardalupas, C. S. Panoutsos, and A. M. K. P. Taylor, “Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor,” Exp. Fluids49(4), 883–909 (2010).
[CrossRef]

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH* chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B100(3), 675–694 (2010).
[CrossRef]

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B-Lasers and Opt.100(3), 675–694 (2010).
[CrossRef]

W. Cai and L. Ma, “Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows,” Appl. Opt.49(4), 601–610 (2010).
[CrossRef] [PubMed]

Y. Zhao, C. Tong, and L. Ma, “Demonstration of a new laser diagnostic based on photodissociation spectroscopy for imaging mixture fraction in a non-premixed jet flame,” Appl. Spectrosc.64(4), 377–383 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

2006 (3)

J. A. Sutton and J. F. Driscoll, “A method to simultaneously image two-dimensional mixture fraction, scalar dissipation rate, temperature and fuel consumption rate fields in a turbulent non-premixed jet flame,” Exp. Fluids41(4), 603–627 (2006).
[CrossRef]

B. O. Ayoolan, R. Balachandran, J. H. Frank, E. Mastorakos, and C. F. Kaminski, “Spatially resolved heat release rate measurements in turbulent premixed flames,” Combust. Flame144(1-2), 1–16 (2006).
[CrossRef]

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. XRay Sci. Technol.14, 119–139 (2006).

2005 (2)

J. Kojima, Y. Ikeda, and T. Nakajima, “Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames,” Combust. Flame140(1-2), 34–45 (2005).
[CrossRef]

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. Ser. B48(1), 34–40 (2005).
[CrossRef]

2004 (3)

D. S. Nobes, B. Wieneke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng.43(2), 407–414 (2004).
[CrossRef]

Y. Hardalupas and M. Orain, “Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame,” Combust. Flame139(3), 188–207 (2004).
[CrossRef]

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

2002 (1)

Y. Ikeda, J. Kojima, and H. Hashimoto, “Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame,” Proc. Combust. Inst.29(2), 1495–1501 (2002).
[CrossRef]

2000 (3)

S. Bockle, J. Kazenwadel, T. Kunzelmann, D. I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst.28(1), 279–286 (2000).
[CrossRef]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
[CrossRef]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
[CrossRef]

1998 (1)

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame113(3), 312–332 (1998).
[CrossRef]

1994 (1)

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging13(4), 601–609 (1994).
[CrossRef] [PubMed]

1991 (1)

K. Nakabe, Y. Mizutani, T. Hirao, and H. Fujioka, “An experimental study on detailed flame structure of liquid fuel sprays with and without gaseous fuel,” Combust. Flame84(1-2), 3–14 (1991).
[CrossRef]

1987 (1)

1984 (1)

1970 (1)

R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. Lond. A Math. Phys. Sci.317(1530), 319–340 (1970).
[CrossRef]

Aldén, M.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

An, X.

Anikin, N.

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B-Lasers and Opt.100(3), 675–694 (2010).
[CrossRef]

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH* chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B100(3), 675–694 (2010).
[CrossRef]

Ayoolan, B. O.

B. O. Ayoolan, R. Balachandran, J. H. Frank, E. Mastorakos, and C. F. Kaminski, “Spatially resolved heat release rate measurements in turbulent premixed flames,” Combust. Flame144(1-2), 1–16 (2006).
[CrossRef]

Balachandran, R.

B. O. Ayoolan, R. Balachandran, J. H. Frank, E. Mastorakos, and C. F. Kaminski, “Spatially resolved heat release rate measurements in turbulent premixed flames,” Combust. Flame144(1-2), 1–16 (2006).
[CrossRef]

Bockhorn, H.

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B-Lasers and Opt.100(3), 675–694 (2010).
[CrossRef]

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH* chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B100(3), 675–694 (2010).
[CrossRef]

Bockle, S.

S. Bockle, J. Kazenwadel, T. Kunzelmann, D. I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst.28(1), 279–286 (2000).
[CrossRef]

Byer, R. L.

Cai, W.

Caswell, A. W.

Chi, Y.

Crowther, R.

R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. Lond. A Math. Phys. Sci.317(1530), 319–340 (1970).
[CrossRef]

Davis, L. C.

DeRosier, D.

R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. Lond. A Math. Phys. Sci.317(1530), 319–340 (1970).
[CrossRef]

Driscoll, J. F.

J. A. Sutton and J. F. Driscoll, “A method to simultaneously image two-dimensional mixture fraction, scalar dissipation rate, temperature and fuel consumption rate fields in a turbulent non-premixed jet flame,” Exp. Fluids41(4), 603–627 (2006).
[CrossRef]

Ewing, D. J.

W. Cai, D. J. Ewing, and L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput.217(12), 5754–5767 (2011).
[CrossRef]

Faris, G. W.

Feldkamp, L. A.

Floyd, J.

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3D measurements of a matrix burner,” Proc. Combust. Inst.33(1), 751–758 (2011).
[CrossRef]

Frank, J. H.

B. O. Ayoolan, R. Balachandran, J. H. Frank, E. Mastorakos, and C. F. Kaminski, “Spatially resolved heat release rate measurements in turbulent premixed flames,” Combust. Flame144(1-2), 1–16 (2006).
[CrossRef]

Fujioka, H.

K. Nakabe, Y. Mizutani, T. Hirao, and H. Fujioka, “An experimental study on detailed flame structure of liquid fuel sprays with and without gaseous fuel,” Combust. Flame84(1-2), 3–14 (1991).
[CrossRef]

Gord, J. R.

Hardalupas, Y.

M. Orain and Y. Hardalupas, “Measurements of local mixture fraction of reacting mixture in swirl-stabilised natural gas-fuelled burners,” Appl. Phys. B105(2), 435–449 (2011).
[CrossRef]

Y. Hardalupas, C. S. Panoutsos, and A. M. K. P. Taylor, “Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor,” Exp. Fluids49(4), 883–909 (2010).
[CrossRef]

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

Y. Hardalupas and M. Orain, “Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame,” Combust. Flame139(3), 188–207 (2004).
[CrossRef]

Hashimoto, H.

Y. Ikeda, J. Kojima, and H. Hashimoto, “Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame,” Proc. Combust. Inst.29(2), 1495–1501 (2002).
[CrossRef]

Hermann, F.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

Hirao, T.

K. Nakabe, Y. Mizutani, T. Hirao, and H. Fujioka, “An experimental study on detailed flame structure of liquid fuel sprays with and without gaseous fuel,” Combust. Flame84(1-2), 3–14 (1991).
[CrossRef]

Hossain, M. M.

M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas.61(5), 1417–1425 (2012).
[CrossRef]

Huang, Q.

Hudson, H. M.

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging13(4), 601–609 (1994).
[CrossRef] [PubMed]

Hult, J.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

Ikeda, Y.

J. Kojima, Y. Ikeda, and T. Nakajima, “Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames,” Combust. Flame140(1-2), 34–45 (2005).
[CrossRef]

Y. Ikeda, J. Kojima, and H. Hashimoto, “Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame,” Proc. Combust. Inst.29(2), 1495–1501 (2002).
[CrossRef]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
[CrossRef]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
[CrossRef]

Ishino, Y.

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. Ser. B48(1), 34–40 (2005).
[CrossRef]

Kaminski, C. F.

B. O. Ayoolan, R. Balachandran, J. H. Frank, E. Mastorakos, and C. F. Kaminski, “Spatially resolved heat release rate measurements in turbulent premixed flames,” Combust. Flame144(1-2), 1–16 (2006).
[CrossRef]

Kao, C. M.

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. XRay Sci. Technol.14, 119–139 (2006).

Kazenwadel, J.

S. Bockle, J. Kazenwadel, T. Kunzelmann, D. I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst.28(1), 279–286 (2000).
[CrossRef]

Kempf, A. M.

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3D measurements of a matrix burner,” Proc. Combust. Inst.33(1), 751–758 (2011).
[CrossRef]

Klingmann, J.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

Klug, A.

R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. Lond. A Math. Phys. Sci.317(1530), 319–340 (1970).
[CrossRef]

Kojima, J.

J. Kojima, Y. Ikeda, and T. Nakajima, “Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames,” Combust. Flame140(1-2), 34–45 (2005).
[CrossRef]

Y. Ikeda, J. Kojima, and H. Hashimoto, “Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame,” Proc. Combust. Inst.29(2), 1495–1501 (2002).
[CrossRef]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
[CrossRef]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
[CrossRef]

Kraetschmer, T.

Kress, J. W.

Kunzelmann, T.

S. Bockle, J. Kazenwadel, T. Kunzelmann, D. I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst.28(1), 279–286 (2000).
[CrossRef]

Larkin, R. S.

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging13(4), 601–609 (1994).
[CrossRef] [PubMed]

Li, X.

Lu, G.

M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas.61(5), 1417–1425 (2012).
[CrossRef]

Ma, L.

W. Cai, D. J. Ewing, and L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput.217(12), 5754–5767 (2011).
[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt.50(4), A29–A37 (2011).
[CrossRef] [PubMed]

Y. Zhao, C. Tong, and L. Ma, “Demonstration of a new laser diagnostic based on photodissociation spectroscopy for imaging mixture fraction in a non-premixed jet flame,” Appl. Spectrosc.64(4), 377–383 (2010).
[CrossRef] [PubMed]

W. Cai and L. Ma, “Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows,” Appl. Opt.49(4), 601–610 (2010).
[CrossRef] [PubMed]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express17(10), 8602–8613 (2009).
[CrossRef] [PubMed]

L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt.47(23), 4186–4192 (2008).
[CrossRef] [PubMed]

L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt.47(21), 3751–3759 (2008).
[CrossRef] [PubMed]

Mastorakos, E.

B. O. Ayoolan, R. Balachandran, J. H. Frank, E. Mastorakos, and C. F. Kaminski, “Spatially resolved heat release rate measurements in turbulent premixed flames,” Combust. Flame144(1-2), 1–16 (2006).
[CrossRef]

Mizutani, Y.

K. Nakabe, Y. Mizutani, T. Hirao, and H. Fujioka, “An experimental study on detailed flame structure of liquid fuel sprays with and without gaseous fuel,” Combust. Flame84(1-2), 3–14 (1991).
[CrossRef]

Mueller, C. J.

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame113(3), 312–332 (1998).
[CrossRef]

Najm, H. N.

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame113(3), 312–332 (1998).
[CrossRef]

Nakabe, K.

K. Nakabe, Y. Mizutani, T. Hirao, and H. Fujioka, “An experimental study on detailed flame structure of liquid fuel sprays with and without gaseous fuel,” Combust. Flame84(1-2), 3–14 (1991).
[CrossRef]

Nakajima, T.

J. Kojima, Y. Ikeda, and T. Nakajima, “Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames,” Combust. Flame140(1-2), 34–45 (2005).
[CrossRef]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
[CrossRef]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
[CrossRef]

Nobes, D. S.

D. S. Nobes, B. Wieneke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng.43(2), 407–414 (2004).
[CrossRef]

Ohiwa, N.

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. Ser. B48(1), 34–40 (2005).
[CrossRef]

Olofsson, J.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

Orain, M.

M. Orain and Y. Hardalupas, “Measurements of local mixture fraction of reacting mixture in swirl-stabilised natural gas-fuelled burners,” Appl. Phys. B105(2), 435–449 (2011).
[CrossRef]

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

Y. Hardalupas and M. Orain, “Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame,” Combust. Flame139(3), 188–207 (2004).
[CrossRef]

Pan, X. H.

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. XRay Sci. Technol.14, 119–139 (2006).

Panoutsos, C. S.

Y. Hardalupas, C. S. Panoutsos, and A. M. K. P. Taylor, “Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor,” Exp. Fluids49(4), 883–909 (2010).
[CrossRef]

Paul, P. H.

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame113(3), 312–332 (1998).
[CrossRef]

Richter, M.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

Roy, S.

S. Panoutsos, C.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

Sanders, S. T.

Schulz, C.

S. Bockle, J. Kazenwadel, T. Kunzelmann, D. I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst.28(1), 279–286 (2000).
[CrossRef]

Seyfried, H.

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

Shin, D. I.

S. Bockle, J. Kazenwadel, T. Kunzelmann, D. I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst.28(1), 279–286 (2000).
[CrossRef]

Sidky, E. Y.

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. XRay Sci. Technol.14, 119–139 (2006).

Suntz, R.

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B-Lasers and Opt.100(3), 675–694 (2010).
[CrossRef]

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH* chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B100(3), 675–694 (2010).
[CrossRef]

Sutton, J. A.

J. A. Sutton and J. F. Driscoll, “A method to simultaneously image two-dimensional mixture fraction, scalar dissipation rate, temperature and fuel consumption rate fields in a turbulent non-premixed jet flame,” Exp. Fluids41(4), 603–627 (2006).
[CrossRef]

Takami, K.

Tatam, R. P.

D. S. Nobes, B. Wieneke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng.43(2), 407–414 (2004).
[CrossRef]

Taylor, A. M. K. P.

Y. Hardalupas, C. S. Panoutsos, and A. M. K. P. Taylor, “Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor,” Exp. Fluids49(4), 883–909 (2010).
[CrossRef]

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

Tong, C.

Wang, F.

Wieneke, B.

D. S. Nobes, B. Wieneke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng.43(2), 407–414 (2004).
[CrossRef]

Wolfrum, J.

S. Bockle, J. Kazenwadel, T. Kunzelmann, D. I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst.28(1), 279–286 (2000).
[CrossRef]

Wyckoff, P. S.

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame113(3), 312–332 (1998).
[CrossRef]

Yan, J.

Yan, Y.

M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas.61(5), 1417–1425 (2012).
[CrossRef]

Zhao, Y.

Appl. Math. Comput. (1)

W. Cai, D. J. Ewing, and L. Ma, “Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography,” Appl. Math. Comput.217(12), 5754–5767 (2011).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (2)

M. Orain and Y. Hardalupas, “Measurements of local mixture fraction of reacting mixture in swirl-stabilised natural gas-fuelled burners,” Appl. Phys. B105(2), 435–449 (2011).
[CrossRef]

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH* chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B100(3), 675–694 (2010).
[CrossRef]

Appl. Phys. B-Lasers and Opt. (1)

N. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames,” Appl. Phys. B-Lasers and Opt.100(3), 675–694 (2010).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Therm. Eng. (1)

Y. Hardalupas, M. Orain, C. S. Panoutsos, A. M. K. P. Taylor, J. Olofsson, H. Seyfried, M. Richter, J. Hult, M. Aldén, F. Hermann, and J. Klingmann, “Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK),” Appl. Therm. Eng.24(11-12), 1619–1632 (2004).
[CrossRef]

Combust. Flame (5)

B. O. Ayoolan, R. Balachandran, J. H. Frank, E. Mastorakos, and C. F. Kaminski, “Spatially resolved heat release rate measurements in turbulent premixed flames,” Combust. Flame144(1-2), 1–16 (2006).
[CrossRef]

Y. Hardalupas and M. Orain, “Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame,” Combust. Flame139(3), 188–207 (2004).
[CrossRef]

J. Kojima, Y. Ikeda, and T. Nakajima, “Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames,” Combust. Flame140(1-2), 34–45 (2005).
[CrossRef]

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the adequacy of certain experimental observables as measurements of flame burning rate,” Combust. Flame113(3), 312–332 (1998).
[CrossRef]

K. Nakabe, Y. Mizutani, T. Hirao, and H. Fujioka, “An experimental study on detailed flame structure of liquid fuel sprays with and without gaseous fuel,” Combust. Flame84(1-2), 3–14 (1991).
[CrossRef]

Exp. Fluids (2)

J. A. Sutton and J. F. Driscoll, “A method to simultaneously image two-dimensional mixture fraction, scalar dissipation rate, temperature and fuel consumption rate fields in a turbulent non-premixed jet flame,” Exp. Fluids41(4), 603–627 (2006).
[CrossRef]

Y. Hardalupas, C. S. Panoutsos, and A. M. K. P. Taylor, “Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor,” Exp. Fluids49(4), 883–909 (2010).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas.61(5), 1417–1425 (2012).
[CrossRef]

IEEE Trans. Med. Imaging (1)

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans. Med. Imaging13(4), 601–609 (1994).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. XRay Sci. Technol. (1)

E. Y. Sidky, C. M. Kao, and X. H. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. XRay Sci. Technol.14, 119–139 (2006).

JSME Int. J. Ser. B (1)

Y. Ishino and N. Ohiwa, “Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame,” JSME Int. J. Ser. B48(1), 34–40 (2005).
[CrossRef]

Opt. Eng. (1)

D. S. Nobes, B. Wieneke, and R. P. Tatam, “Determination of view vectors from image warping mapping functions,” Opt. Eng.43(2), 407–414 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. Combust. Inst. (5)

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3D measurements of a matrix burner,” Proc. Combust. Inst.33(1), 751–758 (2011).
[CrossRef]

S. Bockle, J. Kazenwadel, T. Kunzelmann, D. I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst.28(1), 279–286 (2000).
[CrossRef]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
[CrossRef]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst.28(2), 1757–1764 (2000).
[CrossRef]

Y. Ikeda, J. Kojima, and H. Hashimoto, “Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame,” Proc. Combust. Inst.29(2), 1495–1501 (2002).
[CrossRef]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

R. Crowther, D. DeRosier, and A. Klug, “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. R. Soc. Lond. A Math. Phys. Sci.317(1530), 319–340 (1970).
[CrossRef]

Other (4)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University Press, 1992).

C. T. Herman, Image Reconstruction from Projections - The Fundamentals of Computerized Tomography (Academic Press, 1980).

K. Kohse-Hoinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Illustration of the mathematical formulation of volumetric tomographic.

Fig. 2
Fig. 2

Comparison of phantoms and reconstructions.

Fig. 3
Fig. 3

Comparison of overall reconstruction error using different algorithms.

Fig. 4
Fig. 4

Distribution of reconstruction errors for phantoms shown in Fig. 2.

Fig. 5
Fig. 5

Comparison of RHybrid and RART at various noise levels.

Fig. 6
Fig. 6

Experimental setup for demonstrating the TC technique.

Fig. 7
Fig. 7

Reconstructed flame at different z positions.

Fig. 8
Fig. 8

The reconstructed size of blocked areas.

Fig. 9
Fig. 9

Panel (a): comparison of e using coplanar and arbitrary view angles from numerical simulation. Panel (b): Reconstructed thickness using coplanar and non-coplanar view angles from experimental data.

Tables (1)

Tables Icon

Table 1 Orientation and location of the projection measurements.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P(r,θ,ϕ)= i x i y i z F( x i , y i , z i )PSF( x i , y i , z i ;r,θ,ϕ)
min r,θ,ϕ [ P m (r,θ,ϕ) P c (r,θ,ϕ)] 2 with respect to F(x,y,z)
min r,θ,ϕ [ P m (r,θ,ϕ) P c (r,θ,ϕ)] 2 +γ×R(F) with respect to F(x,y,z)
e= i x i y i z | F i x , i y , i z rec F i x , i y , i z | i x i y i z | F i x , i y , i z |
R TV (F)= i x , i y , i z ( F i x , i y , i z F i x 1, i y , i z ) 2 + ( F i x , i y , i z F i x , i y 1, i z ) 2 + ( F i x , i y , i z F i x , i y , i z 1 ) 2

Metrics