Abstract

We demonstrate propagation of terahertz waves confined to a semiconductor surface that is periodically corrugated with V-shaped grooves. A one-dimensional array of V-grooves is fabricated on a highly-doped silicon surface, using anisotropic wet-etching of crystalline silicon, thereby forming a plasmonic waveguide. Terahertz time domain spectroscopy is used to characterize the propagation of waves near the corrugated surface. We observe that the grating structure creates resonant modes that are confined near the surface. The degree of confinement and frequency of the resonant mode is found to be related to the pitch and depth of the V-grooves. The surface modes are confirmed through both numerical simulations and experimental measurements. Not only does the V-groove geometry represent a new and largely unexplored structure for supporting surface waves, but it also enables the practical fabrication of terahertz waveguides directly on semiconductor surfaces, without relying on reactive-ion etching or electroplating of sub-millimeter metallic surfaces.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface plasmons on smooth and rough surfaces and on grattings, vol. 111 of Springer tracts in modern physics (Springer, 1988).
  2. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88, 061113 (2006).
    [CrossRef]
  3. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
    [CrossRef]
  4. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432, 376–379 (2004).
    [CrossRef] [PubMed]
  5. S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett.88, 251120 (2006).
    [CrossRef]
  6. G. Kumar and V. K. Tripathi, “Surface enhanced Raman Scattering of a surface plasma wave,” J. Phys. D: Appl. Phys.39, 4436–4439 (2006).
    [CrossRef]
  7. Z. Tian, R. Singh, J. Han, J. Gu, Q. Xing, J. Wu, and W. Zhang, “Terahertz superconducting plasmonic hole array,” Opt. Lett.35, 3586–3588 (2010).
    [CrossRef] [PubMed]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater.7, 442–453 (2008).
    [CrossRef]
  9. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt.11, 114030 (2009).
    [CrossRef]
  10. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.1, 601–26 (2008).
    [CrossRef]
  11. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Reports408, 131–314 (2005).
    [CrossRef]
  12. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
    [CrossRef] [PubMed]
  13. Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett.90, 201906 (2007).
    [CrossRef]
  14. W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata, “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. of Select. Topics Quant. Electron.17, 146–153 (2011).
    [CrossRef]
  15. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nature Photon.2, 175–179 (2008).
    [CrossRef]
  16. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt.7, S97–S101 (2005).
    [CrossRef]
  17. G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys.13, 033024 (2011).
    [CrossRef]
  18. J. G. Rivas, M. Kuttge, P. H. Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93, 256804 (2004).
    [CrossRef]
  19. W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express18, 21498–21503 (2010).
    [CrossRef] [PubMed]
  20. T. Jiang, L. Shen, J.-J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett.99, 261103 (2011).
    [CrossRef]
  21. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34, 2063–2065 (2009).
    [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express16, 2676–2684 (2008).
    [CrossRef] [PubMed]
  23. F. Liu, S. Peng, H. Jia, M. Ke, and Z. Liu, “Strongly localized acoustic surface waves propagating along a V-groove,” Appl. Phys. Lett.94, 023505–3 (2009).
    [CrossRef]
  24. Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett.99, 111904 (2011).
    [CrossRef]
  25. C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express20, 5696–5706 (2012).
    [CrossRef] [PubMed]
  26. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett.95, 046802 (2005).
    [CrossRef] [PubMed]
  27. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
    [CrossRef] [PubMed]
  28. J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B85, 075441 (2012).
    [CrossRef]
  29. S. Sriram and E. P. Supertzi, “Novel V-groove structures on silicon,” Appl. Opt.24, 1784–1787 (1985).
    [CrossRef] [PubMed]
  30. U. Fano, “Effects of configuration interaction on intensities amd phase shifts,” Phys. Rev.124, 1866–1878 (1961).
    [CrossRef]
  31. A. Agrawal, T. Matsui, Z. V. Vardeny, and A. Nahata, “Terahertz transmission properties of quaisperiodic and aperiodic aperature arrays,” J. Opt. Soc. Am. B24, 2545–2555 (2007).
    [CrossRef]

2012 (2)

C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express20, 5696–5706 (2012).
[CrossRef] [PubMed]

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B85, 075441 (2012).
[CrossRef]

2011 (4)

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett.99, 111904 (2011).
[CrossRef]

T. Jiang, L. Shen, J.-J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett.99, 261103 (2011).
[CrossRef]

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata, “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. of Select. Topics Quant. Electron.17, 146–153 (2011).
[CrossRef]

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys.13, 033024 (2011).
[CrossRef]

2010 (2)

2009 (4)

F. Liu, S. Peng, H. Jia, M. Ke, and Z. Liu, “Strongly localized acoustic surface waves propagating along a V-groove,” Appl. Phys. Lett.94, 023505–3 (2009).
[CrossRef]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34, 2063–2065 (2009).
[CrossRef] [PubMed]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
[CrossRef]

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt.11, 114030 (2009).
[CrossRef]

2008 (4)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.1, 601–26 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater.7, 442–453 (2008).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nature Photon.2, 175–179 (2008).
[CrossRef]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express16, 2676–2684 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Agrawal, T. Matsui, Z. V. Vardeny, and A. Nahata, “Terahertz transmission properties of quaisperiodic and aperiodic aperature arrays,” J. Opt. Soc. Am. B24, 2545–2555 (2007).
[CrossRef]

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett.90, 201906 (2007).
[CrossRef]

2006 (4)

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88, 061113 (2006).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett.88, 251120 (2006).
[CrossRef]

G. Kumar and V. K. Tripathi, “Surface enhanced Raman Scattering of a surface plasma wave,” J. Phys. D: Appl. Phys.39, 4436–4439 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

2005 (3)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett.95, 046802 (2005).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Reports408, 131–314 (2005).
[CrossRef]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt.7, S97–S101 (2005).
[CrossRef]

2004 (3)

J. G. Rivas, M. Kuttge, P. H. Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93, 256804 (2004).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432, 376–379 (2004).
[CrossRef] [PubMed]

1985 (1)

1961 (1)

U. Fano, “Effects of configuration interaction on intensities amd phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Agrawal, A.

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata, “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. of Select. Topics Quant. Electron.17, 146–153 (2011).
[CrossRef]

A. Agrawal, T. Matsui, Z. V. Vardeny, and A. Nahata, “Terahertz transmission properties of quaisperiodic and aperiodic aperature arrays,” J. Opt. Soc. Am. B24, 2545–2555 (2007).
[CrossRef]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nature Photon.2, 175–179 (2008).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett.88, 251120 (2006).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater.7, 442–453 (2008).
[CrossRef]

Berini, P.

Bolivar, P. H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93, 256804 (2004).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express16, 2676–2684 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett.95, 046802 (2005).
[CrossRef] [PubMed]

Cui, A.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys.13, 033024 (2011).
[CrossRef]

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata, “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. of Select. Topics Quant. Electron.17, 146–153 (2011).
[CrossRef]

Cui, T. J.

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett.99, 111904 (2011).
[CrossRef]

Danckwerts, M.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt.11, 114030 (2009).
[CrossRef]

Desiatov, B.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett.95, 046802 (2005).
[CrossRef] [PubMed]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.1, 601–26 (2008).
[CrossRef]

Ebbesen, T.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett.95, 046802 (2005).
[CrossRef] [PubMed]

Eldaiki, O. M.

Fano, U.

U. Fano, “Effects of configuration interaction on intensities amd phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Fernandez-Cuesta, I.

Fernández-Domínguez, A. I.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B85, 075441 (2012).
[CrossRef]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34, 2063–2065 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nature Photon.2, 175–179 (2008).
[CrossRef]

Garcia-Vidal, F. J.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34, 2063–2065 (2009).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt.7, S97–S101 (2005).
[CrossRef]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nature Photon.2, 175–179 (2008).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

Goykmann, I.

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88, 061113 (2006).
[CrossRef]

Gu, J.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater.7, 442–453 (2008).
[CrossRef]

Han, J.

Hess, O.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B85, 075441 (2012).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88, 061113 (2006).
[CrossRef]

Jia, H.

F. Liu, S. Peng, H. Jia, M. Ke, and Z. Liu, “Strongly localized acoustic surface waves propagating along a V-groove,” Appl. Phys. Lett.94, 023505–3 (2009).
[CrossRef]

Jiang, Q.

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett.99, 111904 (2011).
[CrossRef]

Jiang, T.

T. Jiang, L. Shen, J.-J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett.99, 261103 (2011).
[CrossRef]

Jung, J.

Ke, M.

F. Liu, S. Peng, H. Jia, M. Ke, and Z. Liu, “Strongly localized acoustic surface waves propagating along a V-groove,” Appl. Phys. Lett.94, 023505–3 (2009).
[CrossRef]

Kristensen, A.

Kumar, G.

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata, “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. of Select. Topics Quant. Electron.17, 146–153 (2011).
[CrossRef]

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys.13, 033024 (2011).
[CrossRef]

G. Kumar and V. K. Tripathi, “Surface enhanced Raman Scattering of a surface plasma wave,” J. Phys. D: Appl. Phys.39, 4436–4439 (2006).
[CrossRef]

Kurz, H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93, 256804 (2004).
[CrossRef]

Kuttge, M.

J. G. Rivas, M. Kuttge, P. H. Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93, 256804 (2004).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Levy, U.

Liu, F.

F. Liu, S. Peng, H. Jia, M. Ke, and Z. Liu, “Strongly localized acoustic surface waves propagating along a V-groove,” Appl. Phys. Lett.94, 023505–3 (2009).
[CrossRef]

Liu, Z.

F. Liu, S. Peng, H. Jia, M. Ke, and Z. Liu, “Strongly localized acoustic surface waves propagating along a V-groove,” Appl. Phys. Lett.94, 023505–3 (2009).
[CrossRef]

Lu, Z.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater.7, 442–453 (2008).
[CrossRef]

Maier, S. A.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B85, 075441 (2012).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nature Photon.2, 175–179 (2008).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett.88, 251120 (2006).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Reports408, 131–314 (2005).
[CrossRef]

Martín-Moreno, L.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34, 2063–2065 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nature Photon.2, 175–179 (2008).
[CrossRef]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt.7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

Matsui, T.

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432, 376–379 (2004).
[CrossRef] [PubMed]

Moreno, E.

Nahata, A.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys.13, 033024 (2011).
[CrossRef]

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata, “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. of Select. Topics Quant. Electron.17, 146–153 (2011).
[CrossRef]

A. Agrawal, T. Matsui, Z. V. Vardeny, and A. Nahata, “Terahertz transmission properties of quaisperiodic and aperiodic aperature arrays,” J. Opt. Soc. Am. B24, 2545–2555 (2007).
[CrossRef]

Novotny, L.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt.11, 114030 (2009).
[CrossRef]

Palomba, S.

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt.11, 114030 (2009).
[CrossRef]

Pandey, S.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys.13, 033024 (2011).
[CrossRef]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt.7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

Peng, S.

F. Liu, S. Peng, H. Jia, M. Ke, and Z. Liu, “Strongly localized acoustic surface waves propagating along a V-groove,” Appl. Phys. Lett.94, 023505–3 (2009).
[CrossRef]

Qiu, M.

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett.90, 201906 (2007).
[CrossRef]

Raether, H.

H. Raether, Surface plasmons on smooth and rough surfaces and on grattings, vol. 111 of Springer tracts in modern physics (Springer, 1988).

Ran, L.

T. Jiang, L. Shen, J.-J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett.99, 261103 (2011).
[CrossRef]

Rivas, J. G.

J. G. Rivas, M. Kuttge, P. H. Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93, 256804 (2004).
[CrossRef]

Ruan, Z.

T. Jiang, L. Shen, J.-J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett.99, 261103 (2011).
[CrossRef]

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett.90, 201906 (2007).
[CrossRef]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.1, 601–26 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater.7, 442–453 (2008).
[CrossRef]

Shen, L.

T. Jiang, L. Shen, J.-J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett.99, 261103 (2011).
[CrossRef]

Singh, R.

Smith, C. L. C.

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Reports408, 131–314 (2005).
[CrossRef]

Sriram, S.

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.1, 601–26 (2008).
[CrossRef]

Supertzi, E. P.

Tian, Z.

Tomlinson, L. A.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B85, 075441 (2012).
[CrossRef]

Tripathi, V. K.

G. Kumar and V. K. Tripathi, “Surface enhanced Raman Scattering of a surface plasma wave,” J. Phys. D: Appl. Phys.39, 4436–4439 (2006).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater.7, 442–453 (2008).
[CrossRef]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.1, 601–26 (2008).
[CrossRef]

Vardeny, Z. V.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett.95, 046802 (2005).
[CrossRef] [PubMed]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432, 376–379 (2004).
[CrossRef] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nature Photon.2, 175–179 (2008).
[CrossRef]

Wood, J. J.

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B85, 075441 (2012).
[CrossRef]

Wu, J.

Wu, J.-J.

T. Jiang, L. Shen, J.-J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett.99, 261103 (2011).
[CrossRef]

Xing, Q.

Yang, R.

Yang, T.-J.

T. Jiang, L. Shen, J.-J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett.99, 261103 (2011).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Reports408, 131–314 (2005).
[CrossRef]

Zhang, W.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater.7, 442–453 (2008).
[CrossRef]

Zhao, W.

Zhou, Y. J.

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett.99, 111904 (2011).
[CrossRef]

Zhu, W.

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata, “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. of Select. Topics Quant. Electron.17, 146–153 (2011).
[CrossRef]

Adv. Opt. Photon. (1)

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.1, 601–26 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

F. Liu, S. Peng, H. Jia, M. Ke, and Z. Liu, “Strongly localized acoustic surface waves propagating along a V-groove,” Appl. Phys. Lett.94, 023505–3 (2009).
[CrossRef]

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett.99, 111904 (2011).
[CrossRef]

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett.90, 201906 (2007).
[CrossRef]

T. Jiang, L. Shen, J.-J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett.99, 261103 (2011).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88, 061113 (2006).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett.88, 251120 (2006).
[CrossRef]

IEEE J. of Select. Topics Quant. Electron. (1)

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata, “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. of Select. Topics Quant. Electron.17, 146–153 (2011).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt.7, S97–S101 (2005).
[CrossRef]

S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt.11, 114030 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

G. Kumar and V. K. Tripathi, “Surface enhanced Raman Scattering of a surface plasma wave,” J. Phys. D: Appl. Phys.39, 4436–4439 (2006).
[CrossRef]

Nature (2)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432, 376–379 (2004).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Nature Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater.7, 442–453 (2008).
[CrossRef]

Nature Photon. (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nature Photon.2, 175–179 (2008).
[CrossRef]

New J. Phys. (1)

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys.13, 033024 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Reports (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Reports408, 131–314 (2005).
[CrossRef]

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities amd phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (1)

J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B85, 075441 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett.95, 046802 (2005).
[CrossRef] [PubMed]

J. G. Rivas, M. Kuttge, P. H. Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93, 256804 (2004).
[CrossRef]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

Other (1)

H. Raether, Surface plasmons on smooth and rough surfaces and on grattings, vol. 111 of Springer tracts in modern physics (Springer, 1988).

Supplementary Material (4)

» Media 1: AVI (3709 KB)     
» Media 2: AVI (2887 KB)     
» Media 3: AVI (3634 KB)     
» Media 4: AVI (3686 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Geometry of semiconductor plasmonic V-groove waveguide fabricated on a silicon substrate. The width and height are related by w / h = 2 tan ( θ / 2 ) = 2. (b) Numerically computed dispersion relations of the fundamental surface mode for three different line widths (w).

Fig. 2
Fig. 2

(a) The SEM image of a portion of the fabricated structure (side view). (b) Schematic of the experimental setup. The ZnTe crystal is used to generate terahertz via photo-rectification. The detection is done via electro-optic sampling using 1 mm thick (110) ZnTe crystal.

Fig. 3
Fig. 3

Experimentally measured frequency domain transmission spectra: (a) THz input signal used in the experiments, measured in back-to-back configuration. (b) Simulated (blue) and measured (black) transmission spectrum for plasmonic V-groove waveguide with w = 100 μm. (c) Simulated (red) and measured (black) transmission spectrum for plasmonic V-groove waveguide with w = 200 μm.

Fig. 4
Fig. 4

Electric fields calculated for w = 200 μm at four different frequencies below and above the resonant frequency: (a) 0.2 THz, below resonance ( Media 1), (b) 0.46 THz, on resonance ( Media 2), (c), 0.8 THz, above resonance ( Media 3), and (d) 1.2 THz, second-order resonance ( Media 4). The static frames shown here were captured at the peak of each cycle.

Fig. 5
Fig. 5

(a) Numerically calculated dispersion relation for the surface modes supported by a conductive grating structure with p = 250 μm, w = 150μm, and θ = 90°, 60°, 40°, 20°. (b) The associated group velocity dispersion for the three structures considered in (a), showing the progressively slower wave velocities attained by increasing the depth of the grooves.

Fig. 6
Fig. 6

Variation of confinement factor and group velocity of the fundamental surface mode with the terahertz frequency for two different depths i.e. h = 50 μm and h = 75 μm of V-grooves. The solid line corresponds to confinement while the dotted curves corresponds to the group velocity of the surface mode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k x = k 0 [ 1 + 2 ( h p tan ( k 0 h 2 ) sinc 1 ( k 0 h 2 ) ) 2 ] 1 / 2
α = ( k x 2 k 0 2 ) 1 / 2

Metrics