Abstract

A cryogenic slab laser that is suitable for scaling to high power, while taking full advantage of the improved thermo-optical and thermo-mechanical properties of Yb:YAG at cryogenic temperatures is described. The laser uses a conduction cooled, end pumped, zigzag slab geometry resulting in a near diffraction limited, robust, power scalable design. The design and the initial characterization of the laser up to 200W are presented.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Schulz and S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27(4), 1039–1047 (1991).
    [CrossRef]
  2. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
    [CrossRef] [PubMed]
  3. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG Lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
    [CrossRef]
  4. G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4(2), 592–609 (1971).
    [CrossRef]
  5. P. H. Klein and W. J. Croft, J, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77-300 K,” Appl. Phys. (Berl.) 38, 1603 (1967).
  6. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38(15), 3282–3284 (1999).
    [CrossRef] [PubMed]
  7. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ doped solid state lasers,” invited paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [CrossRef]
  8. T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
    [CrossRef]
  9. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
    [CrossRef] [PubMed]
  10. D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D, 65520D-9 (2007).
    [CrossRef]
  11. D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K, 69520K-9 (2008).
    [CrossRef]
  12. D. J. Ripin, J. Ochoa, R. L. Aggarwal, and T.Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron 41(10), 1274–1277 (2005).
  13. High-Power Laser Handbook, Injeyan, H, and Goodno, G, editors, chap 8, McGraw-Hill, 2011.
  14. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, “Yb:YAG power oscillator with high brightness and linear polarization,” Opt. Lett. 26(21), 1672–1674 (2001).
    [CrossRef] [PubMed]
  15. M. Ganija, D. J. Ottaway, P. J. Veitch, and J. Munch, “A cryogenic, end pumped, zigzag slab laser suitable for power scaling,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, (Optical Society of America, 2011), paper.
    [CrossRef]
  16. NIST (National Institute of Standards and Technology) Material Measurement Laboratory, Cryogenic Group. http://cryogenics.nist.gov/MPropsMAY/Molybdenum/Molybdenum_rev.htm

2008

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K, 69520K-9 (2008).
[CrossRef]

2007

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D, 65520D-9 (2007).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ doped solid state lasers,” invited paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

2005

D. J. Ripin, J. Ochoa, R. L. Aggarwal, and T.Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron 41(10), 1274–1277 (2005).

2004

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

2001

1999

1997

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG Lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

1991

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

P. A. Schulz and S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27(4), 1039–1047 (1991).
[CrossRef]

1971

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4(2), 592–609 (1971).
[CrossRef]

1967

P. H. Klein and W. J. Croft, J, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77-300 K,” Appl. Phys. (Berl.) 38, 1603 (1967).

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ doped solid state lasers,” invited paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. Ochoa, R. L. Aggarwal, and T.Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron 41(10), 1274–1277 (2005).

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

Bennett, L. L.

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D, 65520D-9 (2007).
[CrossRef]

Brown, D. C.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K, 69520K-9 (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D, 65520D-9 (2007).
[CrossRef]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG Lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ doped solid state lasers,” invited paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Choi, H. K.

Croft, W. J.

P. H. Klein and W. J. Croft, J, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77-300 K,” Appl. Phys. (Berl.) 38, 1603 (1967).

Daneu, J. L.

Fan, T. Y.

Fan, T.Y.

D. J. Ripin, J. Ochoa, R. L. Aggarwal, and T.Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron 41(10), 1274–1277 (2005).

Fujita, M.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Goodno, G. D.

Guelzow, J.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K, 69520K-9 (2008).
[CrossRef]

Harkenrider, J.

Henion, S. R.

P. A. Schulz and S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27(4), 1039–1047 (1991).
[CrossRef]

Injeyan, H.

Izawa, Y.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Kawanaka, J.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Klein, P. H.

P. H. Klein and W. J. Croft, J, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77-300 K,” Appl. Phys. (Berl.) 38, 1603 (1967).

Kowalewski, K.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K, 69520K-9 (2008).
[CrossRef]

Kuper, J. W.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K, 69520K-9 (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D, 65520D-9 (2007).
[CrossRef]

Lacovara, P.

Lotito, B. J.

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D, 65520D-9 (2007).
[CrossRef]

Ochoa, J.

D. J. Ripin, J. Ochoa, R. L. Aggarwal, and T.Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron 41(10), 1274–1277 (2005).

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ doped solid state lasers,” invited paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Oliver, D. W.

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4(2), 592–609 (1971).
[CrossRef]

Palese, S.

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ doped solid state lasers,” invited paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. Ochoa, R. L. Aggarwal, and T.Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron 41(10), 1274–1277 (2005).

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Schulz, P. A.

P. A. Schulz and S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27(4), 1039–1047 (1991).
[CrossRef]

Shoji, T.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Singley, J. M.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K, 69520K-9 (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D, 65520D-9 (2007).
[CrossRef]

Slack, G. A.

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4(2), 592–609 (1971).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ doped solid state lasers,” invited paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ doped solid state lasers,” invited paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Tokita, S.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Wang, C. A.

Wynne, R.

Yager, E.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K, 69520K-9 (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D, 65520D-9 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. (Berl.)

P. H. Klein and W. J. Croft, J, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77-300 K,” Appl. Phys. (Berl.) 38, 1603 (1967).

IEEE J. Quantum Electron

D. J. Ripin, J. Ochoa, R. L. Aggarwal, and T.Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron 41(10), 1274–1277 (2005).

IEEE J. Quantum Electron.

P. A. Schulz and S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27(4), 1039–1047 (1991).
[CrossRef]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG Lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+ doped solid state lasers,” invited paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Opt. Lett.

Phys. Rev. B

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4(2), 592–609 (1971).
[CrossRef]

Proc. SPIE

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, and L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D, 65520D-9 (2007).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K, 69520K-9 (2008).
[CrossRef]

Other

High-Power Laser Handbook, Injeyan, H, and Goodno, G, editors, chap 8, McGraw-Hill, 2011.

M. Ganija, D. J. Ottaway, P. J. Veitch, and J. Munch, “A cryogenic, end pumped, zigzag slab laser suitable for power scaling,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, (Optical Society of America, 2011), paper.
[CrossRef]

NIST (National Institute of Standards and Technology) Material Measurement Laboratory, Cryogenic Group. http://cryogenics.nist.gov/MPropsMAY/Molybdenum/Molybdenum_rev.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the optical layout of the laser in the cryostat, indicating the anti-reflection coated windows, the external pump laser cylindrical optics telescopes and the high reflectivity (HR) and outcoupler (OC) of the laser resonator

Fig. 2
Fig. 2

Schematic of the optimized pump beam configuration, showing top and side views how the lens ducts deposit the pump light into the slab via the AR coated side.

Fig. 3
Fig. 3

Schematic of the laser head showing (a) gap between the aluminium annulus and the molybdenum semi-cylinders, (b) the differential thermal contraction of the annulus onto the molybdenum clamping the gain medium and (c) photo of the laser head assembly.

Fig. 4
Fig. 4

Interferograms of unpumped gain medium at 77 K: (a) zero-fringe and (b) carrier-fringe, recorded using a ‘straight through’ probe beam; (c) zero-fringe interferogram recorded using the zigzag probe beam. Figs (d and e) show corresponding interferograms when lasing, at 115W,(pump 208 W)

Fig. 5
Fig. 5

Output power and M2 value for both axis of the cryogenically cooled end pumped zigzag slab as a function of incident diode pump power. The insert illustrates the TEM00 beam, profile, which was verified by quantitative measurements.

Fig. 6
Fig. 6

Gaussian fitting and laser beam profile at 115 W. M2 of less than 1.1 in vertical direction (non-zigzag) and less than 1.05 in horizontal (zigzag) direction (see Fig. 1)

Metrics