Abstract

n-channel body-tied partially depleted metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated for large current applications on a silicon-on-insulator wafer with photonics-oriented specifications. The MOSFET can drive an electrical current as large as 20 mA. We monolithically integrated this MOSFET with a 2 × 2 Mach–Zehnder interferometer optical switch having thermo–optic phase shifters. The static and dynamic performances of the integrated device are experimentally evaluated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, and J. Rosenberg, T. barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monagham, and Y. Vlasov, “A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications application,” in IEEE International Electron Devices Meeting (IDEM) 2012, pp. 33.8.1−3.
  2. P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.
  3. A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
    [CrossRef]
  4. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M-B. Yu, and G-Q. Lo, “Wavelength selective switching with one chip silicon photonic circuit including 8x8 matrix switch,” OFC/NFOEC 2011, OTuM2.
  5. T. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2x2 thermo-optic switch with silicon wire waveguides,” Opt. Express18, 12–14 (2011).
  6. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express18(24), 25225–25231 (2010).
    [CrossRef] [PubMed]
  7. S. Sekiguchi, T. Kurahashi, L. Zhu, K. Kawaguchi, and K. Morito, “Compact and low power operation optical switch using silicon-germanium/silicon hetero-structure waveguide,” Opt. Express20(8), 8949–8958 (2012).
    [CrossRef] [PubMed]
  8. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Nonblocking 16 x 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol.19, 371–379 (2001).
    [CrossRef]
  9. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32x32 optical matrix switch,” European Conference and Exhibition on Optical Communication (ECOC) 2006, OThV4.
  10. S. S. Chen and J. B. Kuo, “An analytical CAD kink effect model of partially-depleted SOI NMOS devices operating in strong inversion,” Solid-State Electron.41(3), 447–458 (1997).
    [CrossRef]
  11. I. A. Blech, “Electromigration in thin aluminum films on titanium nitride,” J. Appl. Phys.47(4), 1203–1208 (1976).
    [CrossRef]
  12. http://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
  13. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol.20(6), 993–1000 (2002).
    [CrossRef]
  14. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys.45(8B), 6658–6662 (2006).
    [CrossRef]

2012

2011

T. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2x2 thermo-optic switch with silicon wire waveguides,” Opt. Express18, 12–14 (2011).

2010

2007

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

2006

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys.45(8B), 6658–6662 (2006).
[CrossRef]

2002

2001

1997

S. S. Chen and J. B. Kuo, “An analytical CAD kink effect model of partially-depleted SOI NMOS devices operating in strong inversion,” Solid-State Electron.41(3), 447–458 (1997).
[CrossRef]

1976

I. A. Blech, “Electromigration in thin aluminum films on titanium nitride,” J. Appl. Phys.47(4), 1203–1208 (1976).
[CrossRef]

Abdalla, S.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Analui, B.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

Asghari, M.

Balmater, E.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

Blech, I. A.

I. A. Blech, “Electromigration in thin aluminum films on titanium nitride,” J. Appl. Phys.47(4), 1203–1208 (1976).
[CrossRef]

Chen, S. S.

S. S. Chen and J. B. Kuo, “An analytical CAD kink effect model of partially-depleted SOI NMOS devices operating in strong inversion,” Solid-State Electron.41(3), 447–458 (1997).
[CrossRef]

Dobbelaere, P. D.

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Dong, P.

Feng, D.

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys.45(8B), 6658–6662 (2006).
[CrossRef]

Gloeckner, S.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Goh, T.

Guckenberger, D.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Harrison, M.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Hasama, T.

T. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2x2 thermo-optic switch with silicon wire waveguides,” Opt. Express18, 12–14 (2011).

Hattori, K.

Himeno, A.

Ishikawa, H.

T. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2x2 thermo-optic switch with silicon wire waveguides,” Opt. Express18, 12–14 (2011).

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys.45(8B), 6658–6662 (2006).
[CrossRef]

Itoh, M.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32x32 optical matrix switch,” European Conference and Exhibition on Optical Communication (ECOC) 2006, OThV4.

Kasahara, R.

Kawaguchi, K.

Kawashima, H.

T. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2x2 thermo-optic switch with silicon wire waveguides,” Opt. Express18, 12–14 (2011).

Kintaka, K.

T. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2x2 thermo-optic switch with silicon wire waveguides,” Opt. Express18, 12–14 (2011).

Koumans, R. G. M. P.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

Krishnamoorthy, A. V.

Kucharski, D.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

Kuo, J. B.

S. S. Chen and J. B. Kuo, “An analytical CAD kink effect model of partially-depleted SOI NMOS devices operating in strong inversion,” Solid-State Electron.41(3), 447–458 (1997).
[CrossRef]

Kurahashi, T.

Li, G.

Liang, H.

Liang, Y.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

Liao, S.

Mack, M.

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Masini, G.

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Matsui, S.

Mekis, A.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Mirsaidi, S.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

Morito, K.

Narasimha, A.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Ohmori, Y.

Okuno, M.

Ooba, N.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32x32 optical matrix switch,” European Conference and Exhibition on Optical Communication (ECOC) 2006, OThV4.

Pinguet, T.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Sahni, S.

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Sekiguchi, S.

Shafiiha, R.

Shibata, T.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32x32 optical matrix switch,” European Conference and Exhibition on Optical Communication (ECOC) 2006, OThV4.

Shoji, T.

T. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2x2 thermo-optic switch with silicon wire waveguides,” Opt. Express18, 12–14 (2011).

Sleboda, T. J.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

Sohma, S.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32x32 optical matrix switch,” European Conference and Exhibition on Optical Communication (ECOC) 2006, OThV4.

Song, D.

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

Suda, S.

T. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2x2 thermo-optic switch with silicon wire waveguides,” Opt. Express18, 12–14 (2011).

Sugita, A.

Takahashi, H.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32x32 optical matrix switch,” European Conference and Exhibition on Optical Communication (ECOC) 2006, OThV4.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys.45(8B), 6658–6662 (2006).
[CrossRef]

Uchiyama, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys.45(8B), 6658–6662 (2006).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys.45(8B), 6658–6662 (2006).
[CrossRef]

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32x32 optical matrix switch,” European Conference and Exhibition on Optical Communication (ECOC) 2006, OThV4.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys.45(8B), 6658–6662 (2006).
[CrossRef]

Yanagisawa, M.

Yasu, M.

Zheng, X.

Zhu, L.

IEEE J. Solid-State Circuits

A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A fully integrated 4× 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology,” IEEE J. Solid-State Circuits42(12), 2736–2744 (2007).
[CrossRef]

J. Appl. Phys.

I. A. Blech, “Electromigration in thin aluminum films on titanium nitride,” J. Appl. Phys.47(4), 1203–1208 (1976).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys.45(8B), 6658–6662 (2006).
[CrossRef]

Opt. Express

Solid-State Electron.

S. S. Chen and J. B. Kuo, “An analytical CAD kink effect model of partially-depleted SOI NMOS devices operating in strong inversion,” Solid-State Electron.41(3), 447–458 (1997).
[CrossRef]

Other

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32x32 optical matrix switch,” European Conference and Exhibition on Optical Communication (ECOC) 2006, OThV4.

http://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M-B. Yu, and G-Q. Lo, “Wavelength selective switching with one chip silicon photonic circuit including 8x8 matrix switch,” OFC/NFOEC 2011, OTuM2.

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, and J. Rosenberg, T. barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monagham, and Y. Vlasov, “A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications application,” in IEEE International Electron Devices Meeting (IDEM) 2012, pp. 33.8.1−3.

P. D. Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, D. Guckenberger, M. Harrison, and A. Narasimha, “Si photonics based high-speed optical transceivers,” European Conference and Exhibition on Optical Communication (ECOC) 2012, We.1.E.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Microscope picture of the fabricated device. WG: waveguide. The AlSi electrode consists of three layers (Ti 5nm/TiN 20nm/AlSi 275nm). (b) Enlarged left-hand part (tied-body part) of MOSFET. STI: silicon trench isolation. (c) Cross-section connection scheme between MOSFET and TiN resistor. S/D/G: source/drain/gate. BOX: buried oxide. Imp: ion implantation. (d) Electrical circuit diagram. (e) Measurement system. Red arrows: optical lines. Black arrows: electrical lines. DUT: device under test. TSL: tunable semiconductor laser. PD: photodetector. DC: direct current. AFG: arbitrary function generator.

Fig. 2
Fig. 2

(a) Drain-source current (Ids)-voltage (Vd) curves at various gate voltages (Vg). (b) Current-voltage curve of the TiN resistor (bottom) and the nonlinear resistance (top). ht: heater (c) Optical output of MZI versus the thermal power measured by biasing the TiN resistor. (d) Fitting the powers at the minimum transmission extremes in (c) versus the relative phase shifts. In (c) and (d), the devices with and without MOSFETs are compared.

Fig. 3
Fig. 3

Two-dimensional mapping of optical outputs of the cross port (a) and the bar port (b) as well as drain-source current (c) versus the gate voltage (Vg) and Vdd.

Fig. 4
Fig. 4

(a) Optical switching response (top) of MZI switch to a 10 KHz square-wave pulsed gate voltage (bottom) under a constant Vdd of 4.2 V. (b) and (c) show the rising and falling edges, respectively, for the cross port in (a). 10−90% response times are indicated.

Metrics