Abstract

We observe and investigate, both experimentally and theoretically, electromagnetically-induced transparency experienced by evanescent fields arising due to total internal reflection from an interface of glass and hot rubidium vapor. This phenomenon manifests itself as a non-Lorentzian peak in the reflectivity spectrum, which features a sharp cusp with a sub-natural width of about 1 MHz. The width of the peak is independent of the thickness of the interaction region, which indicates that the main source of decoherence is likely due to collisions with the cell walls rather than diffusion of atoms. With the inclusion of a coherence-preserving wall coating, this system could be used as an ultra-compact frequency reference.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  2. M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
    [CrossRef] [PubMed]
  3. M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009).
    [CrossRef]
  4. G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A81, 041803 (2010).
    [CrossRef]
  5. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime.” Nature471, 204–8 (2011).
    [CrossRef] [PubMed]
  6. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011).
    [CrossRef] [PubMed]
  7. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nature Phot.3, 706–714 (2009).
    [CrossRef]
  8. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
    [CrossRef] [PubMed]
  9. T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
    [CrossRef] [PubMed]
  10. B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A83, 022312 (2011).
    [CrossRef]
  11. F. Le Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A79, 013818 (2009).
    [CrossRef]
  12. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100, 233602 (2008).
    [CrossRef] [PubMed]
  13. S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett.107, 243601 (2011).
    [CrossRef]
  14. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
    [CrossRef] [PubMed]
  15. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B81, 421–442 (2005).
    [CrossRef]
  16. M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Optic.53, 2583–2591 (2006).
    [CrossRef]
  17. E. E. Mikhailov, T. Horrom, N. Belcher, and I. Novikova, “Performance of a prototype atomic clock based on linlin coherent population trapping resonances in Rb atomic vapor,” J. Opt. Soc. Am. B27, 417–422 (2010).
    [CrossRef]
  18. A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D 1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B105, 767–774 (2011).
    [CrossRef]
  19. Y. Pashayan-Leroy, C. Leroy, A. Sargsyan, A. Papoyan, and D. Sarkisyan, “Electromagnetically induced transparency: the thickness of the vapor column is of the order of a light wavelength,” J. Opt. Soc. Am. B24, 1829–1838 (2007).
    [CrossRef]
  20. L. Lenci, A. Lezama, and H. Failache, “Dark resonances in thin cells for miniaturized atomic-frequency references,” Opt. Lett.34, 425–427 (2009).
    [CrossRef] [PubMed]
  21. S. E. Harris, “Electromagnetically induced transparency in an ideal plasma,” Phys. Rev. Lett.77, 5357–5360 (1996).
    [CrossRef] [PubMed]
  22. J. Guo, J. Cooper, and A. Gallagher, “Selective reflection from a dense atomic vapor,” Phys. Rev. A53, 1130–1138 (1996).
    [CrossRef] [PubMed]
  23. P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A56, 1598–1606 (1997).
    [CrossRef]
  24. A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989).
    [CrossRef]
  25. B. Gross, N. Papageorgiou, V. Sautenkov, and A. Weis, “Velocity selective optical pumping and dark resonances in selective reection spectroscopy,” Phys. Rev. A55, 2973–2981 (1997).
    [CrossRef]
  26. A. Weis, V. A. Sautenkov, and T. W. Hänsch, “Observation of ground-state zeeman coherences in the selective reflection from cesium vapor,” Phys. Rev. A45, 7991–7996 (1992).
    [CrossRef] [PubMed]
  27. J. Appel, A. MacRae, and A. I. Lvovsky, “A versatile digital GHz phase lock for external cavity diode lasers,” Meas. Sci. Technol.20, 055302 (2009).
    [CrossRef]
  28. G. Nienhuis, F. Schuller, and M. Ducloy, “Nonlinear selective reflection from an atomic vapor at arbitrary incidence angle,” Phys. Rev. A38, 5197–5205 (1988).
    [CrossRef] [PubMed]
  29. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 2002).
  30. E. Figueroa, F. Vewinger, J. Appel, and A. I. Lvovsky, “Decoherence of electromagnetically induced transparency in atomic vapor.” Opt. Lett.31, 2625–2627 (2006).
    [CrossRef] [PubMed]
  31. J. D. Jackson, Classical Electrodynamics, Third Edition (John Wiley & Sons, Inc., 1999).
  32. C.-T. Tai, Dyadic Green’s Functions in Electromagnetic Theory (Intext Educational Publishers, 1971).
  33. A. V. Taĭchenachev, A. M. Tumaikin, V. I. Yudin, M. Stähler, R. Wynands, J. Kitching, and L. Hollberg, “Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam,” Phys. Rev. A69, 024501 (2004).
    [CrossRef]
  34. E. Pfleghaar, J. Wurster, S. Kanorsky, and A. Weis, “Time of flight effects in nonlinear magneto-optical spectroscopy,” Opt. Commun.99, 303–308 (1993).
    [CrossRef]
  35. D. Steck, “Akali D line data,” http://steck.us/alkalidata/ .
  36. P. R. Berman, “Markovian relaxation processes for atoms in vapors and in solids: calculation of free-induction decay in the weak-external-field limit,” J. Opt. Soc. Am. B3, 572–586 (1986).
    [CrossRef]
  37. Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett.96, 043601 (2006).
    [CrossRef] [PubMed]
  38. H. W. Moos and R. H. Sands, “Study of spin-exchange collisions in vapors of Rb85, Rb87, and Cs133 by paramagnetic resonance,” Phys. Rev.135, A591–A602 (1964).
    [CrossRef]
  39. M. V. Balabas, K. Jensen, W. Wasilewski, H. Krauter, L. S. Madsen, J. H. Müller, T. Fernholz, and E. S. Polzik, “High quality anti-relaxation coating material for alkali atom vapor cells,” Opt. Express18, 5825–5830 (2010).
    [CrossRef] [PubMed]
  40. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30, 2351–2353 (2005).
    [CrossRef] [PubMed]

2012 (1)

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

2011 (5)

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A83, 022312 (2011).
[CrossRef]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett.107, 243601 (2011).
[CrossRef]

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime.” Nature471, 204–8 (2011).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D 1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B105, 767–774 (2011).
[CrossRef]

2010 (4)

E. E. Mikhailov, T. Horrom, N. Belcher, and I. Novikova, “Performance of a prototype atomic clock based on linlin coherent population trapping resonances in Rb atomic vapor,” J. Opt. Soc. Am. B27, 417–422 (2010).
[CrossRef]

M. V. Balabas, K. Jensen, W. Wasilewski, H. Krauter, L. S. Madsen, J. H. Müller, T. Fernholz, and E. S. Polzik, “High quality anti-relaxation coating material for alkali atom vapor cells,” Opt. Express18, 5825–5830 (2010).
[CrossRef] [PubMed]

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A81, 041803 (2010).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

2009 (7)

F. Le Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A79, 013818 (2009).
[CrossRef]

M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
[CrossRef] [PubMed]

M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009).
[CrossRef]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nature Phot.3, 706–714 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

J. Appel, A. MacRae, and A. I. Lvovsky, “A versatile digital GHz phase lock for external cavity diode lasers,” Meas. Sci. Technol.20, 055302 (2009).
[CrossRef]

L. Lenci, A. Lezama, and H. Failache, “Dark resonances in thin cells for miniaturized atomic-frequency references,” Opt. Lett.34, 425–427 (2009).
[CrossRef] [PubMed]

2008 (1)

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100, 233602 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

E. Figueroa, F. Vewinger, J. Appel, and A. I. Lvovsky, “Decoherence of electromagnetically induced transparency in atomic vapor.” Opt. Lett.31, 2625–2627 (2006).
[CrossRef] [PubMed]

Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett.96, 043601 (2006).
[CrossRef] [PubMed]

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Optic.53, 2583–2591 (2006).
[CrossRef]

2005 (2)

2004 (1)

A. V. Taĭchenachev, A. M. Tumaikin, V. I. Yudin, M. Stähler, R. Wynands, J. Kitching, and L. Hollberg, “Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam,” Phys. Rev. A69, 024501 (2004).
[CrossRef]

1997 (2)

P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A56, 1598–1606 (1997).
[CrossRef]

B. Gross, N. Papageorgiou, V. Sautenkov, and A. Weis, “Velocity selective optical pumping and dark resonances in selective reection spectroscopy,” Phys. Rev. A55, 2973–2981 (1997).
[CrossRef]

1996 (2)

S. E. Harris, “Electromagnetically induced transparency in an ideal plasma,” Phys. Rev. Lett.77, 5357–5360 (1996).
[CrossRef] [PubMed]

J. Guo, J. Cooper, and A. Gallagher, “Selective reflection from a dense atomic vapor,” Phys. Rev. A53, 1130–1138 (1996).
[CrossRef] [PubMed]

1993 (1)

E. Pfleghaar, J. Wurster, S. Kanorsky, and A. Weis, “Time of flight effects in nonlinear magneto-optical spectroscopy,” Opt. Commun.99, 303–308 (1993).
[CrossRef]

1992 (1)

A. Weis, V. A. Sautenkov, and T. W. Hänsch, “Observation of ground-state zeeman coherences in the selective reflection from cesium vapor,” Phys. Rev. A45, 7991–7996 (1992).
[CrossRef] [PubMed]

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

1989 (1)

A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989).
[CrossRef]

1988 (1)

G. Nienhuis, F. Schuller, and M. Ducloy, “Nonlinear selective reflection from an atomic vapor at arbitrary incidence angle,” Phys. Rev. A38, 5197–5205 (1988).
[CrossRef] [PubMed]

1986 (1)

1964 (1)

H. W. Moos and R. H. Sands, “Study of spin-exchange collisions in vapors of Rb85, Rb87, and Cs133 by paramagnetic resonance,” Phys. Rev.135, A591–A602 (1964).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A81, 041803 (2010).
[CrossRef]

Akul’shin, A. M.

A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989).
[CrossRef]

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Allman, M. S.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime.” Nature471, 204–8 (2011).
[CrossRef] [PubMed]

Altomare, F.

M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009).
[CrossRef]

Appel, J.

J. Appel, A. MacRae, and A. I. Lvovsky, “A versatile digital GHz phase lock for external cavity diode lasers,” Meas. Sci. Technol.20, 055302 (2009).
[CrossRef]

E. Figueroa, F. Vewinger, J. Appel, and A. I. Lvovsky, “Decoherence of electromagnetically induced transparency in atomic vapor.” Opt. Lett.31, 2625–2627 (2006).
[CrossRef] [PubMed]

Aspelmeyer, M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Balabas, M. V.

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Baur, M.

M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
[CrossRef] [PubMed]

Beausoleil, R.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100, 233602 (2008).
[CrossRef] [PubMed]

Belcher, N.

Berman, P. R.

Bianchetti, R.

M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
[CrossRef] [PubMed]

Blais, A.

M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
[CrossRef] [PubMed]

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

Chan, J.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Cicak, K.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime.” Nature471, 204–8 (2011).
[CrossRef] [PubMed]

M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009).
[CrossRef]

Cooper, J.

P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A56, 1598–1606 (1997).
[CrossRef]

J. Guo, J. Cooper, and A. Gallagher, “Selective reflection from a dense atomic vapor,” Phys. Rev. A53, 1130–1138 (1996).
[CrossRef] [PubMed]

Dawkins, S. T.

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett.107, 243601 (2011).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Ducloy, M.

G. Nienhuis, F. Schuller, and M. Ducloy, “Nonlinear selective reflection from an atomic vapor at arbitrary incidence angle,” Phys. Rev. A38, 5197–5205 (1988).
[CrossRef] [PubMed]

Failache, H.

Fernholz, T.

Figueroa, E.

Filipp, S.

M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
[CrossRef] [PubMed]

Fink, J. M.

M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
[CrossRef] [PubMed]

Firstenberg, O.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Gallagher, A.

P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A56, 1598–1606 (1997).
[CrossRef]

J. Guo, J. Cooper, and A. Gallagher, “Selective reflection from a dense atomic vapor,” Phys. Rev. A53, 1130–1138 (1996).
[CrossRef] [PubMed]

Gerginov, V.

Göppl, M.

M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
[CrossRef] [PubMed]

Gorshkov, A. V.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Gröblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Gross, B.

B. Gross, N. Papageorgiou, V. Sautenkov, and A. Weis, “Velocity selective optical pumping and dark resonances in selective reection spectroscopy,” Phys. Rev. A55, 2973–2981 (1997).
[CrossRef]

Guo, J.

J. Guo, J. Cooper, and A. Gallagher, “Selective reflection from a dense atomic vapor,” Phys. Rev. A53, 1130–1138 (1996).
[CrossRef] [PubMed]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Hakonen, P. J.

M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009).
[CrossRef]

Hakuta, K.

F. Le Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A79, 013818 (2009).
[CrossRef]

Hall, M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100, 233602 (2008).
[CrossRef] [PubMed]

Han, Y.

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A83, 022312 (2011).
[CrossRef]

Hänsch, T. W.

A. Weis, V. A. Sautenkov, and T. W. Hänsch, “Observation of ground-state zeeman coherences in the selective reflection from cesium vapor,” Phys. Rev. A45, 7991–7996 (1992).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency in an ideal plasma,” Phys. Rev. Lett.77, 5357–5360 (1996).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

He, B.

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A83, 022312 (2011).
[CrossRef]

Hill, J. T.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Hofferberth, S.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Hollberg, L.

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30, 2351–2353 (2005).
[CrossRef] [PubMed]

A. V. Taĭchenachev, A. M. Tumaikin, V. I. Yudin, M. Stähler, R. Wynands, J. Kitching, and L. Hollberg, “Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam,” Phys. Rev. A69, 024501 (2004).
[CrossRef]

Horrom, T.

Huang, S.

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A81, 041803 (2010).
[CrossRef]

Imamoglu, A.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, Third Edition (John Wiley & Sons, Inc., 1999).

Jensen, K.

Kanorsky, S.

E. Pfleghaar, J. Wurster, S. Kanorsky, and A. Weis, “Time of flight effects in nonlinear magneto-optical spectroscopy,” Opt. Commun.99, 303–308 (1993).
[CrossRef]

Kharisov, G. G.

A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989).
[CrossRef]

Kitching, J.

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30, 2351–2353 (2005).
[CrossRef] [PubMed]

A. V. Taĭchenachev, A. M. Tumaikin, V. I. Yudin, M. Stähler, R. Wynands, J. Kitching, and L. Hollberg, “Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam,” Phys. Rev. A69, 024501 (2004).
[CrossRef]

Klein, M.

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Optic.53, 2583–2591 (2006).
[CrossRef]

Knappe, S.

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Krauter, H.

Kumar, P.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100, 233602 (2008).
[CrossRef] [PubMed]

Le Kien, F.

F. Le Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A79, 013818 (2009).
[CrossRef]

Leek, P. J.

M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
[CrossRef] [PubMed]

Lenci, L.

Leroy, C.

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D 1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B105, 767–774 (2011).
[CrossRef]

Y. Pashayan-Leroy, C. Leroy, A. Sargsyan, A. Papoyan, and D. Sarkisyan, “Electromagnetically induced transparency: the thickness of the vapor column is of the order of a light wavelength,” J. Opt. Soc. Am. B24, 1829–1838 (2007).
[CrossRef]

Lezama, A.

Li, D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime.” Nature471, 204–8 (2011).
[CrossRef] [PubMed]

Li, J.

M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009).
[CrossRef]

Liang, Q.-Y.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Lukin, M. D.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Lvovsky, A. I.

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A83, 022312 (2011).
[CrossRef]

J. Appel, A. MacRae, and A. I. Lvovsky, “A versatile digital GHz phase lock for external cavity diode lasers,” Meas. Sci. Technol.20, 055302 (2009).
[CrossRef]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nature Phot.3, 706–714 (2009).
[CrossRef]

E. Figueroa, F. Vewinger, J. Appel, and A. I. Lvovsky, “Decoherence of electromagnetically induced transparency in atomic vapor.” Opt. Lett.31, 2625–2627 (2006).
[CrossRef] [PubMed]

MacRae, A.

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A83, 022312 (2011).
[CrossRef]

J. Appel, A. MacRae, and A. I. Lvovsky, “A versatile digital GHz phase lock for external cavity diode lasers,” Meas. Sci. Technol.20, 055302 (2009).
[CrossRef]

Madsen, L. S.

Malakhova, V. I.

A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989).
[CrossRef]

Mikhailov, E. E.

Mirzoyan, R.

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D 1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B105, 767–774 (2011).
[CrossRef]

Mitsch, R.

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett.107, 243601 (2011).
[CrossRef]

Moos, H. W.

H. W. Moos and R. H. Sands, “Study of spin-exchange collisions in vapors of Rb85, Rb87, and Cs133 by paramagnetic resonance,” Phys. Rev.135, A591–A602 (1964).
[CrossRef]

Müller, J. H.

Nienhuis, G.

G. Nienhuis, F. Schuller, and M. Ducloy, “Nonlinear selective reflection from an atomic vapor at arbitrary incidence angle,” Phys. Rev. A38, 5197–5205 (1988).
[CrossRef] [PubMed]

Nikitin, V. V.

A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989).
[CrossRef]

Novikova, I.

E. E. Mikhailov, T. Horrom, N. Belcher, and I. Novikova, “Performance of a prototype atomic clock based on linlin coherent population trapping resonances in Rb atomic vapor,” J. Opt. Soc. Am. B27, 417–422 (2010).
[CrossRef]

Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett.96, 043601 (2006).
[CrossRef] [PubMed]

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Optic.53, 2583–2591 (2006).
[CrossRef]

Painter, O.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Papageorgiou, N.

B. Gross, N. Papageorgiou, V. Sautenkov, and A. Weis, “Velocity selective optical pumping and dark resonances in selective reection spectroscopy,” Phys. Rev. A55, 2973–2981 (1997).
[CrossRef]

Papoyan, A.

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D 1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B105, 767–774 (2011).
[CrossRef]

Y. Pashayan-Leroy, C. Leroy, A. Sargsyan, A. Papoyan, and D. Sarkisyan, “Electromagnetically induced transparency: the thickness of the vapor column is of the order of a light wavelength,” J. Opt. Soc. Am. B24, 1829–1838 (2007).
[CrossRef]

Paraoanu, G. S.

M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009).
[CrossRef]

Park, J. I.

M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009).
[CrossRef]

Pashayan-Leroy, Y.

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D 1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B105, 767–774 (2011).
[CrossRef]

Y. Pashayan-Leroy, C. Leroy, A. Sargsyan, A. Papoyan, and D. Sarkisyan, “Electromagnetically induced transparency: the thickness of the vapor column is of the order of a light wavelength,” J. Opt. Soc. Am. B24, 1829–1838 (2007).
[CrossRef]

Pati, G. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100, 233602 (2008).
[CrossRef] [PubMed]

Peyronel, T.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Pfleghaar, E.

E. Pfleghaar, J. Wurster, S. Kanorsky, and A. Weis, “Time of flight effects in nonlinear magneto-optical spectroscopy,” Opt. Commun.99, 303–308 (1993).
[CrossRef]

Phillips, D. F.

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Optic.53, 2583–2591 (2006).
[CrossRef]

Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett.96, 043601 (2006).
[CrossRef] [PubMed]

Pohl, T.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Polzik, E. S.

Rauschenbeutel, A.

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett.107, 243601 (2011).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Reitz, D.

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett.107, 243601 (2011).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Robinson, H. G.

Safavi-Naeini, A. H.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Salit, K.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100, 233602 (2008).
[CrossRef] [PubMed]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nature Phot.3, 706–714 (2009).
[CrossRef]

Sands, R. H.

H. W. Moos and R. H. Sands, “Study of spin-exchange collisions in vapors of Rb85, Rb87, and Cs133 by paramagnetic resonance,” Phys. Rev.135, A591–A602 (1964).
[CrossRef]

Sargsyan, A.

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D 1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B105, 767–774 (2011).
[CrossRef]

Y. Pashayan-Leroy, C. Leroy, A. Sargsyan, A. Papoyan, and D. Sarkisyan, “Electromagnetically induced transparency: the thickness of the vapor column is of the order of a light wavelength,” J. Opt. Soc. Am. B24, 1829–1838 (2007).
[CrossRef]

Sarkisyan, D.

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D 1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B105, 767–774 (2011).
[CrossRef]

Y. Pashayan-Leroy, C. Leroy, A. Sargsyan, A. Papoyan, and D. Sarkisyan, “Electromagnetically induced transparency: the thickness of the vapor column is of the order of a light wavelength,” J. Opt. Soc. Am. B24, 1829–1838 (2007).
[CrossRef]

Sautenkov, V.

B. Gross, N. Papageorgiou, V. Sautenkov, and A. Weis, “Velocity selective optical pumping and dark resonances in selective reection spectroscopy,” Phys. Rev. A55, 2973–2981 (1997).
[CrossRef]

Sautenkov, V. A.

A. Weis, V. A. Sautenkov, and T. W. Hänsch, “Observation of ground-state zeeman coherences in the selective reflection from cesium vapor,” Phys. Rev. A45, 7991–7996 (1992).
[CrossRef] [PubMed]

A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989).
[CrossRef]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Schuller, F.

G. Nienhuis, F. Schuller, and M. Ducloy, “Nonlinear selective reflection from an atomic vapor at arbitrary incidence angle,” Phys. Rev. A38, 5197–5205 (1988).
[CrossRef] [PubMed]

Schwindt, P. D. D.

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 2002).

Shah, V.

Shahriar, M. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100, 233602 (2008).
[CrossRef] [PubMed]

Sillanpää, M. A.

M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009).
[CrossRef]

Simmonds, R. W.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime.” Nature471, 204–8 (2011).
[CrossRef] [PubMed]

M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009).
[CrossRef]

Simon, C.

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A83, 022312 (2011).
[CrossRef]

Sirois, A. J.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime.” Nature471, 204–8 (2011).
[CrossRef] [PubMed]

Spillane, S. M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100, 233602 (2008).
[CrossRef] [PubMed]

Stähler, M.

A. V. Taĭchenachev, A. M. Tumaikin, V. I. Yudin, M. Stähler, R. Wynands, J. Kitching, and L. Hollberg, “Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam,” Phys. Rev. A69, 024501 (2004).
[CrossRef]

Steffen, L.

M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
[CrossRef] [PubMed]

Tai, C.-T.

C.-T. Tai, Dyadic Green’s Functions in Electromagnetic Theory (Intext Educational Publishers, 1971).

Tai?chenachev, A. V.

A. V. Taĭchenachev, A. M. Tumaikin, V. I. Yudin, M. Stähler, R. Wynands, J. Kitching, and L. Hollberg, “Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam,” Phys. Rev. A69, 024501 (2004).
[CrossRef]

Teufel, J. D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime.” Nature471, 204–8 (2011).
[CrossRef] [PubMed]

Tittel, W.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nature Phot.3, 706–714 (2009).
[CrossRef]

Tumaikin, A. M.

A. V. Taĭchenachev, A. M. Tumaikin, V. I. Yudin, M. Stähler, R. Wynands, J. Kitching, and L. Hollberg, “Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam,” Phys. Rev. A69, 024501 (2004).
[CrossRef]

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B81, 421–442 (2005).
[CrossRef]

Velichanskii, V. L.

A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989).
[CrossRef]

Vetsch, E.

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett.107, 243601 (2011).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Vewinger, F.

Vuletic, V.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Wallraff, A.

M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
[CrossRef] [PubMed]

Walsworth, R. L.

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Optic.53, 2583–2591 (2006).
[CrossRef]

Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett.96, 043601 (2006).
[CrossRef] [PubMed]

Wang, P.

P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A56, 1598–1606 (1997).
[CrossRef]

Wasilewski, W.

Weis, A.

B. Gross, N. Papageorgiou, V. Sautenkov, and A. Weis, “Velocity selective optical pumping and dark resonances in selective reection spectroscopy,” Phys. Rev. A55, 2973–2981 (1997).
[CrossRef]

E. Pfleghaar, J. Wurster, S. Kanorsky, and A. Weis, “Time of flight effects in nonlinear magneto-optical spectroscopy,” Opt. Commun.99, 303–308 (1993).
[CrossRef]

A. Weis, V. A. Sautenkov, and T. W. Hänsch, “Observation of ground-state zeeman coherences in the selective reflection from cesium vapor,” Phys. Rev. A45, 7991–7996 (1992).
[CrossRef] [PubMed]

Whittaker, J. D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime.” Nature471, 204–8 (2011).
[CrossRef] [PubMed]

Wurster, J.

E. Pfleghaar, J. Wurster, S. Kanorsky, and A. Weis, “Time of flight effects in nonlinear magneto-optical spectroscopy,” Opt. Commun.99, 303–308 (1993).
[CrossRef]

Wynands, R.

A. V. Taĭchenachev, A. M. Tumaikin, V. I. Yudin, M. Stähler, R. Wynands, J. Kitching, and L. Hollberg, “Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam,” Phys. Rev. A69, 024501 (2004).
[CrossRef]

Xiao, Y.

Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett.96, 043601 (2006).
[CrossRef] [PubMed]

Yudin, V. I.

A. V. Taĭchenachev, A. M. Tumaikin, V. I. Yudin, M. Stähler, R. Wynands, J. Kitching, and L. Hollberg, “Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam,” Phys. Rev. A69, 024501 (2004).
[CrossRef]

Zherdev, A. I.

A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989).
[CrossRef]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 2002).

Appl. Phys. B (2)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B81, 421–442 (2005).
[CrossRef]

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D 1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B105, 767–774 (2011).
[CrossRef]

J. Mod. Optic. (1)

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Optic.53, 2583–2591 (2006).
[CrossRef]

J. Opt. Soc. Am. B (3)

Meas. Sci. Technol. (1)

J. Appel, A. MacRae, and A. I. Lvovsky, “A versatile digital GHz phase lock for external cavity diode lasers,” Meas. Sci. Technol.20, 055302 (2009).
[CrossRef]

Nature (3)

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime.” Nature471, 204–8 (2011).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state.” Nature478, 89–92 (2011).
[CrossRef] [PubMed]

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature488, 57–60 (2012).
[CrossRef] [PubMed]

Nature Phot. (1)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nature Phot.3, 706–714 (2009).
[CrossRef]

Opt. Commun. (1)

E. Pfleghaar, J. Wurster, S. Kanorsky, and A. Weis, “Time of flight effects in nonlinear magneto-optical spectroscopy,” Opt. Commun.99, 303–308 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. (1)

H. W. Moos and R. H. Sands, “Study of spin-exchange collisions in vapors of Rb85, Rb87, and Cs133 by paramagnetic resonance,” Phys. Rev.135, A591–A602 (1964).
[CrossRef]

Phys. Rev. A (9)

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A81, 041803 (2010).
[CrossRef]

A. V. Taĭchenachev, A. M. Tumaikin, V. I. Yudin, M. Stähler, R. Wynands, J. Kitching, and L. Hollberg, “Nonlinear-resonance line shapes: Dependence on the transverse intensity distribution of a light beam,” Phys. Rev. A69, 024501 (2004).
[CrossRef]

G. Nienhuis, F. Schuller, and M. Ducloy, “Nonlinear selective reflection from an atomic vapor at arbitrary incidence angle,” Phys. Rev. A38, 5197–5205 (1988).
[CrossRef] [PubMed]

B. He, A. MacRae, Y. Han, A. I. Lvovsky, and C. Simon, “Transverse multimode effects on the performance of photon-photon gates,” Phys. Rev. A83, 022312 (2011).
[CrossRef]

F. Le Kien and K. Hakuta, “Slowing down of a guided light field along a nanofiber in a cold atomic gas,” Phys. Rev. A79, 013818 (2009).
[CrossRef]

J. Guo, J. Cooper, and A. Gallagher, “Selective reflection from a dense atomic vapor,” Phys. Rev. A53, 1130–1138 (1996).
[CrossRef] [PubMed]

P. Wang, A. Gallagher, and J. Cooper, “Selective reflection by Rb,” Phys. Rev. A56, 1598–1606 (1997).
[CrossRef]

B. Gross, N. Papageorgiou, V. Sautenkov, and A. Weis, “Velocity selective optical pumping and dark resonances in selective reection spectroscopy,” Phys. Rev. A55, 2973–2981 (1997).
[CrossRef]

A. Weis, V. A. Sautenkov, and T. W. Hänsch, “Observation of ground-state zeeman coherences in the selective reflection from cesium vapor,” Phys. Rev. A45, 7991–7996 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (9)

S. E. Harris, “Electromagnetically induced transparency in an ideal plasma,” Phys. Rev. Lett.77, 5357–5360 (1996).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett.102, 243602 (2009).
[CrossRef] [PubMed]

M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu, and P. J. Hakonen, “Autler-Townes Effect in a Superconducting Three-Level System,” Phys. Rev. Lett.103, 193601 (2009).
[CrossRef]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100, 233602 (2008).
[CrossRef] [PubMed]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett.107, 243601 (2011).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Y. Xiao, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Diffusion-induced ramsey narrowing,” Phys. Rev. Lett.96, 043601 (2006).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

A. M. Akul’shin, V. L. Velichanskii, A. I. Zherdev, A. S. Zibrov, V. I. Malakhova, V. V. Nikitin, V. A. Sautenkov, and G. G. Kharisov, “Selective reflection from a glass-gas interface at high angles of incidence of light,” Sov. J. Quantum Electron.19, 416–419 (1989).
[CrossRef]

Other (4)

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 2002).

J. D. Jackson, Classical Electrodynamics, Third Edition (John Wiley & Sons, Inc., 1999).

C.-T. Tai, Dyadic Green’s Functions in Electromagnetic Theory (Intext Educational Publishers, 1971).

D. Steck, “Akali D line data,” http://steck.us/alkalidata/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup used to observe EIT with evanescent fields. PBS: polarizing beam splitter, λ/2: half-wave plate.

Fig. 2
Fig. 2

Power of the probe field reflected from the interface under various conditions. a) Probe field scanning far off-resonance, control field present. b) Probe field scanning over resonance, control field absent. c) Same as b), but the control field power that leaks through the filtering PBS is added to show consistency between (b) and (d). d) Probe field scanning over resonance, control field present, resulting in an EIT window. Control field power is 75 mW and θθc ≈ 3 mrad.

Fig. 3
Fig. 3

Measured reflected probe field power with the control field present (blue circles) and theoretical fits (red dashed lines) for different values of the incidence angle. The control field power is the same for all plots.

Fig. 4
Fig. 4

(a) Width of the evanescent EIT line as a function of the control field power, showing the measurements for both the pedestal (blue circles) and the cusp (black triangles). Solid lines are linear fits, and the dashed line indicates the width of the natural rubidium absorption line (5.77 MHz [35]). (b) Reflection spectrum and (c) its derivative with a measured cusp FWHM of 1.77 MHz. The solid line in (b) is a fit to Eq. (4); note that the experimentally observed cusp is narrower than predicted theoretically. The data in (b) and (c) correspond to a control field power of 30 mW.

Fig. 5
Fig. 5

FWHM of both the pedestal (blue circles) and cusp (black triangles) as a function of θθc. Constant width for θ > θc shows that the primary decoherence mechanism is collisions with the interface. Data taken for a control field power of approximately 70 mW.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

χ ( z ) = N d 2 π ε 0 h ¯ δ + i γ Ω c 2 | e 2 i β k 0 z | ( δ + i γ ) ( δ + Δ c + i Γ / 2 )
E 2 ( 0 ) = cos θ ( n 2 n 1 ) 2 sin 2 θ cos θ + ( n 2 n 1 ) 2 sin 2 θ E 1 ( 0 ) r ( χ ) E 1 ( 0 ) r ( χ = 0 ) ( 1 n 1 cos θ β ( n 1 2 1 ) χ )
( z 2 k 0 2 η 2 ) E 3 ( n ) ( z ) = k 0 2 χ ( z ) E 3 ( n 1 ) ( z ) z > 0 ( z 2 + n 1 2 k 0 2 cos 2 θ ) E 2 ( n ) ( z ) = 0 z < 0
E 2 ( 0 ) = r ( χ = 0 ) ( 1 + 2 i n 1 k 0 cos θ η ( n 1 2 1 ) 0 χ ( z ) e 2 k 0 η z d z ) = r ( χ = 0 ) ( 1 + in 1 cos θ η ( n 1 2 1 ) χ eff )
χ eff = N d 2 π ε 0 h ¯ δ + i γ Ω c 2 ln ( 1 Ω c 2 ( δ + i γ ) ( δ + Δ c + i Γ / 2 ) )

Metrics