Abstract

Spectral compression of femtosecond pulses by second harmonic generation in the presence of substantial group velocity dispersion provides a convenient source of narrowband Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS). We discuss here a simple and efficient modification that dramatically increases the versatility of the second harmonic spectral compression technique. Adding a spectral filter following second harmonic generation produces narrowband pulses with a superior temporal profile. This simple modification i) increases the Raman gain for a given pulse energy, ii) improves the spectral resolution, iii) suppresses coherent oscillations associated with slowly dephasing vibrations, and iv) extends the useful tunable range to at least 330-750 nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene,” Phys. Rev. B Condens. Matter49(18), 13259–13262 (1994).
    [CrossRef] [PubMed]
  2. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
    [CrossRef] [PubMed]
  3. C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
    [CrossRef] [PubMed]
  4. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
    [CrossRef] [PubMed]
  5. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B85(4), 557–564 (2006).
    [CrossRef]
  6. H. Luo, L. Qian, P. Yuan, and H. Zhu, “Generation of tunable narrowband pulses initiating from a femtosecond optical parametric amplifier,” Opt. Express14(22), 10631–10635 (2006).
    [CrossRef] [PubMed]
  7. S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett.89(12), 121124 (2006).
    [CrossRef]
  8. D. T. Co, J. V. Lockard, D. W. McCamant, and M. R. Wasielewski, “Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump,” Appl. Opt.49(10), 1880–1885 (2010).
    [CrossRef] [PubMed]
  9. S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum.82(6), 063102 (2011).
    [CrossRef] [PubMed]
  10. M. Nejbauer and C. Radzewicz, “Efficient spectral shift and compression of femtosecond pulses by parametric amplification of chirped light,” Opt. Express20(3), 2136–2142 (2012).
    [CrossRef] [PubMed]
  11. E. Pontecorvo, S. M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno, “Femtosecond stimulated Raman spectrometer in the 320-520nm range,” Opt. Express19(2), 1107–1112 (2011).
    [CrossRef] [PubMed]
  12. S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
    [CrossRef] [PubMed]
  13. T. C. Gunaratne, M. Milliken, J. R. Challa, and M. C. Simpson, “Tunable ultrafast infrared/visible laser to probe vibrational dynamics,” Appl. Opt.45(3), 558–564 (2006).
    [CrossRef] [PubMed]
  14. M. A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals,” Opt. Express15(14), 8884–8891 (2007).
    [CrossRef] [PubMed]
  15. M. Marangoni, D. Brida, M. Conforti, A. D. Capobianco, C. Manzoni, F. Baronio, G. F. Nalesso, C. De Angelis, R. Ramponi, and G. Cerullo, “Synthesis of picosecond pulses by spectral compression and shaping of femtosecond pulses in engineered quadratic nonlinear media,” Opt. Lett.34(3), 241–243 (2009).
    [CrossRef] [PubMed]
  16. M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett.34(21), 3262–3264 (2009).
    [CrossRef] [PubMed]
  17. A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett.35(2), 226–228 (2010).
    [CrossRef] [PubMed]
  18. K. Moutzouris, E. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, “Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source,” Opt. Lett.31(8), 1148–1150 (2006).
    [CrossRef] [PubMed]
  19. M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-Phased-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
    [CrossRef]

2012 (1)

2011 (2)

S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum.82(6), 063102 (2011).
[CrossRef] [PubMed]

E. Pontecorvo, S. M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno, “Femtosecond stimulated Raman spectrometer in the 320-520nm range,” Opt. Express19(2), 1107–1112 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (3)

2007 (1)

2006 (5)

2005 (2)

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

2004 (1)

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

1994 (1)

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene,” Phys. Rev. B Condens. Matter49(18), 13259–13262 (1994).
[CrossRef] [PubMed]

1992 (1)

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-Phased-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Adler, E.

Badioli, M.

Baronio, F.

Brida, D.

Byer, R.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-Phased-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Capobianco, A. D.

Cerullo, G.

Challa, J. R.

Cirmi, G.

Co, D. T.

Conforti, M.

De Angelis, C.

Dobryakov, A. L.

S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum.82(6), 063102 (2011).
[CrossRef] [PubMed]

Ernsting, N. P.

S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum.82(6), 063102 (2011).
[CrossRef] [PubMed]

Fang, C.

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
[CrossRef] [PubMed]

Fejer, M.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-Phased-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Frontiera, R. R.

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
[CrossRef] [PubMed]

Gambetta, A.

Gilch, P.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B85(4), 557–564 (2006).
[CrossRef]

Grancini, G.

Gunaratne, T. C.

Hattori, Y.

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene,” Phys. Rev. B Condens. Matter49(18), 13259–13262 (1994).
[CrossRef] [PubMed]

Jundt, D.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-Phased-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Kapetanaki, S. M.

Kobayashi, T.

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene,” Phys. Rev. B Condens. Matter49(18), 13259–13262 (1994).
[CrossRef] [PubMed]

Kovalenko, S. A.

S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum.82(6), 063102 (2011).
[CrossRef] [PubMed]

Kukura, P.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

Kumar, V.

Laimgruber, S.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B85(4), 557–564 (2006).
[CrossRef]

Lee, S.-Y.

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

Leitenstorfer, A.

Lockard, J. V.

Luo, H.

Magel, G.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-Phased-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Manzoni, C.

Marangoni, M.

Marangoni, M. A.

Mathies, R. A.

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
[CrossRef] [PubMed]

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett.89(12), 121124 (2006).
[CrossRef]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

McCamant, D. W.

D. T. Co, J. V. Lockard, D. W. McCamant, and M. R. Wasielewski, “Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump,” Appl. Opt.49(10), 1880–1885 (2010).
[CrossRef] [PubMed]

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

Milliken, M.

Moutzouris, K.

Nalesso, G. F.

Nejbauer, M.

Pigozzo, F. M.

Polli, D.

Pontecorvo, E.

Qian, L.

Quintavalle, M.

Radzewicz, C.

Ramponi, R.

Schachenmayr, H.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B85(4), 557–564 (2006).
[CrossRef]

Schmidt, B.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B85(4), 557–564 (2006).
[CrossRef]

Scopigno, T.

Shim, S.

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett.89(12), 121124 (2006).
[CrossRef]

Simpson, M. C.

Sotier, F.

Tran, R.

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
[CrossRef] [PubMed]

Träutlein, D.

Wandschneider, D. B.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Wasielewski, M. R.

Yoon, S.

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

Yoshizawa, M.

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene,” Phys. Rev. B Condens. Matter49(18), 13259–13262 (1994).
[CrossRef] [PubMed]

Yuan, P.

Zhang, D.

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

Zhu, H.

Zinth, W.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B85(4), 557–564 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B85(4), 557–564 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett.89(12), 121124 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-Phased-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

J. Chem. Phys. (1)

S. Yoon, D. W. McCamant, P. Kukura, R. A. Mathies, D. Zhang, and S.-Y. Lee, “Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay,” J. Chem. Phys.122(2), 024505 (2005).
[CrossRef] [PubMed]

Nature (1)

C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature462(7270), 200–204 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B Condens. Matter (1)

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene,” Phys. Rev. B Condens. Matter49(18), 13259–13262 (1994).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum.75(11), 4971–4980 (2004).
[CrossRef] [PubMed]

S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum.82(6), 063102 (2011).
[CrossRef] [PubMed]

Science (1)

P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science310(5750), 1006–1009 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Left column: Stimulated Raman spectra of cyclohexane using the standard SH-SC technique to obtain Raman pump pulses at 520nm, 430nm and 380nm (top to bottom). Right column: temporal profile of each Raman pump pulse (red) superimposed with the temporal profiles of the 802cm−1 (green) and 1027 cm−1 (blue) vibrational modes of cyclohexane. Time-zero is defined by arrival of the femtosecond Raman probe pulse (note log scale).

Fig. 2
Fig. 2

Slit-width variation of a Raman pump pulse centered near 520nm. (a) Spectral profile, (b) temporal profile, and (c) corresponding stimulated Raman spectrum of cyclohexane for an open slit (red), and slit widths of 0.6 mm (green), 0.3 mm (blue), 0.2 mm (magenta), and 0.15 mm (cyan).

Fig. 3
Fig. 3

Cyclohexane spectra for different relative delays between the Raman pump and probe pulses. Grey shaded areas give the temporal profile of the 520nm Raman pump for an open slit (i.e. unshaped SH-SC pulse; top panels) and for a slit width of 0.15 mm (lower panels). Black dots indicate arrival time of the femtosecond Raman probe pulse in each panel. Δt = 0 is the maximum of the Raman pump pulse. The intensity of the unfiltered pulse is attenuated to have the same intensity as the filtered pulse.

Fig. 4
Fig. 4

Cyclohexane spectra for Raman pump wavelengths of 521, 602, and 688nm (top to bottom). Scale bars show corresponding probe wavelengths. Pump pulse energy is ~0.5 µJ.

Metrics