Abstract

Inspired by Babinet’s principle, we proposed a new plasmonic structure for enhancing the optical magnetic field, i.e. split ring aperture, whose complement is the well-known split ring. The split ring aperture exhibits a much better performance under radially polarized excitation than linearly polarized excitation. We attribute the ultra-high intensity enhancement in magnetic field to the symmetric matching between the aperture geometry and the direction of the electric field vector in each direction of radially excitation. The impact of the design parameters on the intensity enhancement and resonant wavelength is also investigated in details.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009).
    [CrossRef]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
    [CrossRef]
  3. L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
    [CrossRef] [PubMed]
  4. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57(1), 303–331 (2006).
    [CrossRef] [PubMed]
  5. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006).
    [CrossRef] [PubMed]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  7. Z. Gao, L. Xu, and Z. Wang, “Broadband plasmonic nanoantenna for magnetic field enhancement,” J. Electromagn. Waves Appl.25(17-18), 2341–2352 (2011).
    [CrossRef]
  8. E. Vourc’h, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
    [CrossRef]
  9. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
    [CrossRef] [PubMed]
  10. T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
    [CrossRef] [PubMed]
  11. N. Zhou, E. C. Kinzel, and X. Xu, “Complementary bowtie aperture for localizing and enhancing optical magnetic field,” Opt. Lett.36(15), 2764–2766 (2011).
    [CrossRef] [PubMed]
  12. F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
    [CrossRef] [PubMed]
  13. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009).
    [CrossRef]
  14. Lumerical FDTD Solution, FDTD Solutions 7.5, http://www.lumerical.com/ .
  15. W. M. Haynes and D. R. Lide, Handbook of chemistry and physics (CRC Press, 2003).
  16. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
    [CrossRef]
  17. L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
    [CrossRef]
  18. J. Scheuer, “Ultra-high enhancement of the field concentration in Split Ring Resonators by azimuthally polarized excitation,” Opt. Express19(25), 25454–25464 (2011).
    [CrossRef] [PubMed]

2011

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Z. Gao, L. Xu, and Z. Wang, “Broadband plasmonic nanoantenna for magnetic field enhancement,” J. Electromagn. Waves Appl.25(17-18), 2341–2352 (2011).
[CrossRef]

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

N. Zhou, E. C. Kinzel, and X. Xu, “Complementary bowtie aperture for localizing and enhancing optical magnetic field,” Opt. Lett.36(15), 2764–2766 (2011).
[CrossRef] [PubMed]

J. Scheuer, “Ultra-high enhancement of the field concentration in Split Ring Resonators by azimuthally polarized excitation,” Opt. Express19(25), 25454–25464 (2011).
[CrossRef] [PubMed]

2010

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

2009

E. Vourc’h, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009).
[CrossRef]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009).
[CrossRef]

2008

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

2006

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57(1), 303–331 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006).
[CrossRef] [PubMed]

2004

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
[CrossRef] [PubMed]

2003

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
[CrossRef] [PubMed]

Baida, F. I.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Beruete, M.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
[CrossRef] [PubMed]

Bharadwaj, P.

Bonache, J.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
[CrossRef] [PubMed]

Brongersma, M. L.

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Burr, G. W.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Cao, L.

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Cima, L.

E. Vourc’h, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
[CrossRef]

Clemens, B.

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006).
[CrossRef] [PubMed]

Deutsch, B.

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Falcone, F.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
[CrossRef] [PubMed]

Fan, P.

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Fischer, U. C.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Gao, Z.

Z. Gao, L. Xu, and Z. Wang, “Broadband plasmonic nanoantenna for magnetic field enhancement,” J. Electromagn. Waves Appl.25(17-18), 2341–2352 (2011).
[CrossRef]

Grosjean, T.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Joubert, P.-Y.

E. Vourc’h, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
[CrossRef]

Kelly, K. L.

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
[CrossRef]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006).
[CrossRef] [PubMed]

Kinzel, E. C.

Klein, M. W.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Laso, M. A.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
[CrossRef] [PubMed]

Linden, S.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Marqués, R.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
[CrossRef] [PubMed]

Martín, F.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
[CrossRef] [PubMed]

Mivelle, M.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009).
[CrossRef]

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57(1), 303–331 (2006).
[CrossRef] [PubMed]

Park, J. S.

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Schatz, G. C.

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
[CrossRef]

Scheuer, J.

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Sorolla, M.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
[CrossRef] [PubMed]

Stranick, S. J.

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57(1), 303–331 (2006).
[CrossRef] [PubMed]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Vourc’h, E.

E. Vourc’h, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
[CrossRef]

Wang, Z.

Z. Gao, L. Xu, and Z. Wang, “Broadband plasmonic nanoantenna for magnetic field enhancement,” J. Electromagn. Waves Appl.25(17-18), 2341–2352 (2011).
[CrossRef]

Wegener, M.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Xu, L.

Z. Gao, L. Xu, and Z. Wang, “Broadband plasmonic nanoantenna for magnetic field enhancement,” J. Electromagn. Waves Appl.25(17-18), 2341–2352 (2011).
[CrossRef]

Xu, X.

Zhan, Q.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zhao, L. L.

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
[CrossRef]

Zhou, N.

Adv. Opt. Photon.

Annu. Rev. Phys. Chem.

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57(1), 303–331 (2006).
[CrossRef] [PubMed]

J. Electromagn. Waves Appl.

Z. Gao, L. Xu, and Z. Wang, “Broadband plasmonic nanoantenna for magnetic field enhancement,” J. Electromagn. Waves Appl.25(17-18), 2341–2352 (2011).
[CrossRef]

J. Phys. Chem. B

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B107(30), 7343–7350 (2003).
[CrossRef]

Nano Lett.

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006).
[CrossRef] [PubMed]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Nat. Photonics

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004).
[CrossRef] [PubMed]

Prog. Electromagnetics Res.

E. Vourc’h, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
[CrossRef]

Science

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Other

Lumerical FDTD Solution, FDTD Solutions 7.5, http://www.lumerical.com/ .

W. M. Haynes and D. R. Lide, Handbook of chemistry and physics (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic representation of a split ring aperture and parameter definitions: aperture length, D, gap width, G and strip width, W. (b) The intensity and field profiles of radially polarized beam. The maximum of the field is indicated as the white circle in Fig. 1(b), whose diameter equals to D.

Fig. 2
Fig. 2

(a) Magnetic field intensity enhancement under radially polarized excitation (full curves) and linearly polarized excitation (dotted curves). The resonant wavelengths are 3.15 μm, 3.04 μm and 2.93 μm for w = 30nm, 40nm and 50nm for both radially and linearly polarized excitations. Magnetic field intensity (b and c), volume current density (d) and electric field intensity (e) distributions for SRA under radially polarized excitation at resonance (3.15μm), when D = 300nm, G = 50nm and W = 30nm.

Fig. 3
Fig. 3

The variation of resonant wavelength (indicated as dots with full lines) with D (a) and G (b) for radially polarized illumination. The resonant wavelengths by linearly polarized excitation are almost identical comparing to that by radially polarized excitation. The relationship of magnetic field intensity enhancement (indicated as triangles with dotted lines) with D (a) and G (b) for both the two illumination. G is kept 50 nm in (a) and D is kept 300 nm in (b).

Fig. 4
Fig. 4

Magnetic spectral response under the radially polarized illumination for one- (in red), two- (in blue) and four-strip (in black) split ring aperture, whose resonant wavelength are 3.15μm, 1.90μm and 1.23μm, respectively

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E r =H G 10 e x +H G 01 e y
E(x,y,z)= E 0 H m ( 2 x w( z ) ) H n ( 2 y w( z ) ) w 0 w( z ) exp( i φ mn ( z ) )exp( i k r 2 2q( z ) )

Metrics