Abstract

We simulate, fabricate, and characterize near perfectly absorbing two-dimensional grating structures in the thermal infrared using heavily doped silicon (HdSi) that supports long wave infrared surface plasmon polaritons (LWIR SPP’s). The devices were designed and optimized using both finite difference time domain (FDTD) and rigorous coupled wave analysis (RCWA) simulation techniques to satisfy stringent requirements for thermal management applications requiring high thermal radiation absorption over a narrow angular range and low visible radiation absorption over a broad angular range. After optimization and fabrication, characterization was performed using reflection spectroscopy and normal incidence emissivity measurements. Excellent agreement between simulation and experiment was obtained.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Longwave plasmonics on doped silicon and silicides

Richard Soref, Robert E. Peale, and Walter Buchwald
Opt. Express 16(9) 6507-6514 (2008)

Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures

J. Gómez Rivas, P. Haring Bolivar, and H. Kurz
Opt. Lett. 29(14) 1680-1682 (2004)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (λ≈ 8-11.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366 (1998).
    [Crossref] [PubMed]
  2. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
    [Crossref]
  3. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
    [Crossref]
  4. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
    [Crossref] [PubMed]
  5. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
    [Crossref] [PubMed]
  6. M. Auslender and S. Hava, “Zero Infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption,” Infrared Phys. Technol. 36(7), 1077–1088 (1995).
    [Crossref]
  7. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730 (2010).
    [Crossref]
  8. M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).
  9. G. Kirchho, Monatsberichte der Akademie der Wissenschaften zu Berlin, sessions of Dec. 1859–1860, 783–787.
  10. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  11. A. R. Ellis, H. M. Graham, M. B. Sinclair, and J. C. Verley, “Variable-angle directional emissometer for moderate-temperature emissivity measurements,” Proc. SPIE 7065, 706508, 706508-9 (2008).
    [Crossref]

2011 (2)

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

2010 (1)

2008 (2)

A. R. Ellis, H. M. Graham, M. B. Sinclair, and J. C. Verley, “Variable-angle directional emissometer for moderate-temperature emissivity measurements,” Proc. SPIE 7065, 706508, 706508-9 (2008).
[Crossref]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

1998 (1)

1995 (1)

M. Auslender and S. Hava, “Zero Infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption,” Infrared Phys. Technol. 36(7), 1077–1088 (1995).
[Crossref]

1988 (2)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[Crossref] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
[Crossref] [PubMed]

Auslender, M.

M. Auslender and S. Hava, “Zero Infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption,” Infrared Phys. Technol. 36(7), 1077–1088 (1995).
[Crossref]

Boreman, G. D.

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730 (2010).
[Crossref]

Buchwald, W.

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

Buchwald, W. R.

Capasso, F.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Long-wavelength (λ≈ 8-11.5 μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23, 1366 (1998).
[Crossref] [PubMed]

Cho, A. Y.

Cleary, J.

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

Cleary, J. W.

Davids, P. S.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Diaz, D. J.

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

Diehl, L.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Drehman, A.

Edamura, T.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Edwards, O.

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

Ellis, A. R.

A. R. Ellis, H. M. Graham, M. B. Sinclair, and J. C. Verley, “Variable-angle directional emissometer for moderate-temperature emissivity measurements,” Proc. SPIE 7065, 706508, 706508-9 (2008).
[Crossref]

Faist, J.

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Gebhart, B.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[Crossref] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
[Crossref] [PubMed]

Ginn, J. C.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Gmachl, C.

Gorman, T. A.

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

Graham, H. M.

A. R. Ellis, H. M. Graham, M. B. Sinclair, and J. C. Verley, “Variable-angle directional emissometer for moderate-temperature emissivity measurements,” Proc. SPIE 7065, 706508, 706508-9 (2008).
[Crossref]

Hava, S.

M. Auslender and S. Hava, “Zero Infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption,” Infrared Phys. Technol. 36(7), 1077–1088 (1995).
[Crossref]

Hesketh, P. J.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
[Crossref] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[Crossref] [PubMed]

Hutchinson, A. L.

Ishigami, M.

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730 (2010).
[Crossref]

Jarecki, R. L.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Kan, H.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Medhi, G.

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

Peale, R. E.

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27(4), 730 (2010).
[Crossref]

Pflügl, C.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Shahzad, M.

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

Shaner, E. A.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Shelton, D. J.

Sinclair, M. B.

A. R. Ellis, H. M. Graham, M. B. Sinclair, and J. C. Verley, “Variable-angle directional emissometer for moderate-temperature emissivity measurements,” Proc. SPIE 7065, 706508, 706508-9 (2008).
[Crossref]

Sirtori, C.

Sivco, D. L.

Smith, C. W.

Soref, R.

Tsuchikawa, R.

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

Verley, J. C.

A. R. Ellis, H. M. Graham, M. B. Sinclair, and J. C. Verley, “Variable-angle directional emissometer for moderate-temperature emissivity measurements,” Proc. SPIE 7065, 706508, 706508-9 (2008).
[Crossref]

Wang, Q. J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Yamanishi, M.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Yu, N.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Zemel, J. N.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[Crossref] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
[Crossref] [PubMed]

Infrared Phys. Technol. (1)

M. Auslender and S. Hava, “Zero Infrared reflectance anomaly in doped silicon lamellar gratings. I. From antireflection to total absorption,” Infrared Phys. Technol. 36(7), 1077–1088 (1995).
[Crossref]

J. Appl. Phys. (1)

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (2)

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction,” Phys. Rev. B Condens. Matter 37(18), 10795–10802 (1988).
[Crossref] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988).
[Crossref] [PubMed]

Proc. SPIE (2)

M. Shahzad, G. Medhi, R. E. Peale, R. Tsuchikawa, M. Ishigami, W. Buchwald, J. Cleary, G. D. Boreman, O. Edwards, D. J. Diaz, and T. A. Gorman, “Infrared surface waves on semiconductor and conducting polymer,” Proc. SPIE 8024, 80240B (2011).

A. R. Ellis, H. M. Graham, M. B. Sinclair, and J. C. Verley, “Variable-angle directional emissometer for moderate-temperature emissivity measurements,” Proc. SPIE 7065, 706508, 706508-9 (2008).
[Crossref]

Other (2)

G. Kirchho, Monatsberichte der Akademie der Wissenschaften zu Berlin, sessions of Dec. 1859–1860, 783–787.

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dielectric penetration depth, kd, and propagation length, δspp, of HDSi air plasmons with both quantities normalized to wavelength, λ.

Fig. 2
Fig. 2

Reflectivity contour plots resulting from RCWA parameter sweeps of device geometry. (a) w = 6 μm, h = 1.5 μm, varying period. (b) Λ = 9 μm, w = 6 μm, varying mesa height. (c) Λ = 9 μm, h = 1.5 μm, varying mesa side length. (d) Schematic of device array.

Fig. 3
Fig. 3

SEM image of HDSi mesa array.

Fig. 4
Fig. 4

Normal incidence specular reflection measurement and FDTD simulation with angular correction.

Fig. 5
Fig. 5

Contour plots of angle dependent device reflectivity from HDR measurements for (a) P polarized with Littrow condition overlaid, (c) S polarized, and (e) the average of the two and angle dependent device reflectivity from RCWA simulations for (b) P polarized, (d) S polarized, and (f) the average of the two.

Fig. 6
Fig. 6

Measured emissivity and image projection weighted RCWA absorption simulations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k sp = k 0 ε m ε d ε m + ε d ,
ε(ω)= ε ( 1+ i ω pτ 2 ω(1+ωτ) ),
ω p 2 = n e 2 m * ϵ 0 ϵ  ,   
θ= sin 1 ( 2λ/π ),

Metrics