Abstract

The evolution of the transmission spectrum of a photonic crystal waveguide under electro-optic tuning was studied in the band of an odd TE-like mode. The spectral signature of the interband scattering from the TM-like mode to the odd TE-like mode was characterized at various bias levels. The shift of the odd-mode band was determined based on a statistical approach to overcome the spectral noise. Simulations were performed to explain the spectral shift based on electro-optic and thermo-optic effects in the active photonic crystal structures. Potential impact of interband scattering on indirect interband-transition-based optical isolators is discussed and potential remedies are offered.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
    [CrossRef]
  2. H. Lira, Z. F. Yu, S. H. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
    [CrossRef] [PubMed]
  3. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  4. L. L. Gu, W. Jiang, X. N. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett.90(7), 071105 (2007).
    [CrossRef]
  5. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011).
    [CrossRef] [PubMed]
  6. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett.36(9), 1728–1730 (2011).
    [CrossRef] [PubMed]
  7. B. Cluzel, D. Gerard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett.85(14), 2682–2684 (2004).
    [CrossRef]
  8. J. Tan, M. Lu, A. Stein, and W. Jiang, “High-purity transmission of a slow light odd mode in a photonic crystal waveguide,” Opt. Lett.37(15), 3189–3191 (2012).
    [CrossRef] [PubMed]
  9. W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
    [CrossRef]
  10. R. A. Integlia, W. Song, J. Tan, and W. Jiang, “Longitudinal and angular dispersions in photonic crystals: A synergistic perspective on slow light and superprism effects,” J. Nanosci. Nanotechnol.10(3), 1596–1605 (2010).
    [CrossRef] [PubMed]
  11. A. H. Atabaki, E. S. Hosseini, B. Momeni, and A. Adibi, “Enhancing the guiding bandwidth of photonic crystal waveguides on silicon-on-insulator,” Opt. Lett.33(22), 2608–2610 (2008).
    [CrossRef] [PubMed]
  12. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
    [CrossRef]
  13. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
    [CrossRef] [PubMed]
  14. Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87(22), 221105 (2005).
    [CrossRef]
  15. W. Jiang, L. Gu, X. Chen, and R. T. Chen, “Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress,” Solid-State Electron.51(10), 1278–1286 (2007).
    [CrossRef]
  16. M. Chahal, G. K. Celler, Y. Jaluria, and W. Jiang, “Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform,” Opt. Express20(4), 4225–4231 (2012).
    [CrossRef] [PubMed]
  17. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
    [CrossRef]
  18. S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
    [CrossRef]
  19. M. S. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics5(9), 549–553 (2011).
    [CrossRef]
  20. A. Hosseini, X. C. Xu, H. Subbaraman, C. Y. Lin, S. Rahimi, and R. T. Chen, “Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator,” Opt. Express20(11), 12318–12325 (2012).
    [CrossRef] [PubMed]
  21. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
    [CrossRef]

2012 (4)

2011 (3)

2010 (3)

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

R. A. Integlia, W. Song, J. Tan, and W. Jiang, “Longitudinal and angular dispersions in photonic crystals: A synergistic perspective on slow light and superprism effects,” J. Nanosci. Nanotechnol.10(3), 1596–1605 (2010).
[CrossRef] [PubMed]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

2009 (1)

Z. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

2008 (1)

2007 (3)

L. L. Gu, W. Jiang, X. N. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett.90(7), 071105 (2007).
[CrossRef]

W. Jiang, L. Gu, X. Chen, and R. T. Chen, “Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress,” Solid-State Electron.51(10), 1278–1286 (2007).
[CrossRef]

S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

2005 (3)

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87(22), 221105 (2005).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

B. Cluzel, D. Gerard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett.85(14), 2682–2684 (2004).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Adibi, A.

Atabaki, A. H.

Baba, T.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Butsch, A.

M. S. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics5(9), 549–553 (2011).
[CrossRef]

Calvo, V.

B. Cluzel, D. Gerard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett.85(14), 2682–2684 (2004).
[CrossRef]

Cassette, S.

S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Celler, G. K.

Chahal, M.

Charvolin, T.

B. Cluzel, D. Gerard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett.85(14), 2682–2684 (2004).
[CrossRef]

Chen, R. T.

A. Hosseini, X. C. Xu, H. Subbaraman, C. Y. Lin, S. Rahimi, and R. T. Chen, “Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator,” Opt. Express20(11), 12318–12325 (2012).
[CrossRef] [PubMed]

W. Jiang, L. Gu, X. Chen, and R. T. Chen, “Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress,” Solid-State Electron.51(10), 1278–1286 (2007).
[CrossRef]

L. L. Gu, W. Jiang, X. N. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett.90(7), 071105 (2007).
[CrossRef]

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87(22), 221105 (2005).
[CrossRef]

Chen, X.

W. Jiang, L. Gu, X. Chen, and R. T. Chen, “Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress,” Solid-State Electron.51(10), 1278–1286 (2007).
[CrossRef]

Chen, X. N.

L. L. Gu, W. Jiang, X. N. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett.90(7), 071105 (2007).
[CrossRef]

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87(22), 221105 (2005).
[CrossRef]

Cluzel, B.

B. Cluzel, D. Gerard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett.85(14), 2682–2684 (2004).
[CrossRef]

Combrie, S.

S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Corcoran, B.

de Fornel, F.

B. Cluzel, D. Gerard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett.85(14), 2682–2684 (2004).
[CrossRef]

De Rossi, A.

S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Eggleton, B. J.

Fan, S. H.

H. Lira, Z. F. Yu, S. H. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Z. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

Gabet, R.

S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Gerard, D.

B. Cluzel, D. Gerard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett.85(14), 2682–2684 (2004).
[CrossRef]

Gu, L.

W. Jiang, L. Gu, X. Chen, and R. T. Chen, “Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress,” Solid-State Electron.51(10), 1278–1286 (2007).
[CrossRef]

Gu, L. L.

L. L. Gu, W. Jiang, X. N. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett.90(7), 071105 (2007).
[CrossRef]

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87(22), 221105 (2005).
[CrossRef]

Hadji, E.

B. Cluzel, D. Gerard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett.85(14), 2682–2684 (2004).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Hamel, P.

S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Hosseini, A.

Hosseini, E. S.

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Integlia, R. A.

R. A. Integlia, W. Song, J. Tan, and W. Jiang, “Longitudinal and angular dispersions in photonic crystals: A synergistic perspective on slow light and superprism effects,” J. Nanosci. Nanotechnol.10(3), 1596–1605 (2010).
[CrossRef] [PubMed]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

Ishikura, N.

Jaluria, Y.

Jaouen, Y.

S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Jiang, W.

M. Chahal, G. K. Celler, Y. Jaluria, and W. Jiang, “Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform,” Opt. Express20(4), 4225–4231 (2012).
[CrossRef] [PubMed]

J. Tan, M. Lu, A. Stein, and W. Jiang, “High-purity transmission of a slow light odd mode in a photonic crystal waveguide,” Opt. Lett.37(15), 3189–3191 (2012).
[CrossRef] [PubMed]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

R. A. Integlia, W. Song, J. Tan, and W. Jiang, “Longitudinal and angular dispersions in photonic crystals: A synergistic perspective on slow light and superprism effects,” J. Nanosci. Nanotechnol.10(3), 1596–1605 (2010).
[CrossRef] [PubMed]

W. Jiang, L. Gu, X. Chen, and R. T. Chen, “Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress,” Solid-State Electron.51(10), 1278–1286 (2007).
[CrossRef]

L. L. Gu, W. Jiang, X. N. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett.90(7), 071105 (2007).
[CrossRef]

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87(22), 221105 (2005).
[CrossRef]

Jiang, Y. Q.

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87(22), 221105 (2005).
[CrossRef]

Joannopoulos, J. D.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

Kang, M. S.

M. S. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics5(9), 549–553 (2011).
[CrossRef]

Krauss, T. F.

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Li, J.

Lin, C. Y.

Lipson, M.

H. Lira, Z. F. Yu, S. H. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Lira, H.

H. Lira, Z. F. Yu, S. H. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Lu, M.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Momeni, B.

Monat, C.

Nguyen, H. C.

Notomi, M.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

O’Faolain, L.

Pelusi, M. D.

Picard, E.

B. Cluzel, D. Gerard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett.85(14), 2682–2684 (2004).
[CrossRef]

Rahimi, S.

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Russell, P. S. J.

M. S. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics5(9), 549–553 (2011).
[CrossRef]

Sakai, Y.

Shinkawa, M.

Shinya, A.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Soljacic, M.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

Song, W.

R. A. Integlia, W. Song, J. Tan, and W. Jiang, “Longitudinal and angular dispersions in photonic crystals: A synergistic perspective on slow light and superprism effects,” J. Nanosci. Nanotechnol.10(3), 1596–1605 (2010).
[CrossRef] [PubMed]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Stein, A.

Subbaraman, H.

Talneau, A.

S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Tan, J.

J. Tan, M. Lu, A. Stein, and W. Jiang, “High-purity transmission of a slow light odd mode in a photonic crystal waveguide,” Opt. Lett.37(15), 3189–3191 (2012).
[CrossRef] [PubMed]

R. A. Integlia, W. Song, J. Tan, and W. Jiang, “Longitudinal and angular dispersions in photonic crystals: A synergistic perspective on slow light and superprism effects,” J. Nanosci. Nanotechnol.10(3), 1596–1605 (2010).
[CrossRef] [PubMed]

Tran, N. V. Q.

S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Wang, L.

L. L. Gu, W. Jiang, X. N. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett.90(7), 071105 (2007).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Weidner, E.

S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Xu, X. C.

Yu, Z.

Z. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

Yu, Z. F.

H. Lira, Z. F. Yu, S. H. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

L. L. Gu, W. Jiang, X. N. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett.90(7), 071105 (2007).
[CrossRef]

B. Cluzel, D. Gerard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett.85(14), 2682–2684 (2004).
[CrossRef]

Y. Q. Jiang, W. Jiang, L. L. Gu, X. N. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett.87(22), 221105 (2005).
[CrossRef]

S. Combrie, N. V. Q. Tran, E. Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss, and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

R. A. Integlia, W. Song, J. Tan, and W. Jiang, “Longitudinal and angular dispersions in photonic crystals: A synergistic perspective on slow light and superprism effects,” J. Nanosci. Nanotechnol.10(3), 1596–1605 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3(4), 211–219 (2004).
[CrossRef] [PubMed]

Nat. Photonics (3)

M. S. Kang, A. Butsch, and P. S. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics5(9), 549–553 (2011).
[CrossRef]

Z. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (2)

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

H. Lira, Z. F. Yu, S. H. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Solid-State Electron. (1)

W. Jiang, L. Gu, X. Chen, and R. T. Chen, “Photonic crystal waveguide modulators for silicon photonics: Device physics and some recent progress,” Solid-State Electron.51(10), 1278–1286 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics