Abstract

A silicon-on-insulator (SOI) narrow-passband filter based on cascaded Mach-Zehnder interferometers (MZIs) is theoretically simulated and experimentally demonstrated, indicating that the free spectral range (FSR) of the proposed filter can be significantly enlarged by increasing the number of the MZI stages. A filter using three-stage cascaded MZIs structure is successfully realized in the experiment and a 3-dB bandwidth of about 1.536 GHz and FSR about 13.5 GHz have been achieved. The performance of a downconverting analog photonic link (APL) employing the designed filter for microwave signal processing is also measured and a spurious free dynamic range (SFDR) as high as 104.1dB-Hz2/3 is observed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” arXiv:1211.4114 (2012).
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
    [CrossRef]
  3. J. Yao, “Microwave Photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
    [CrossRef]
  4. B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightw. Technol.24(12), 4600–4615 (2006).
    [CrossRef]
  5. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightw. Technol.31(4), 571–586 (2013).
    [CrossRef]
  6. P. Toliver, R. Menendez, T. Banwell, A. Agarwal, T. K. Woodward, N.-N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, and M. Ashghari, “A programmable optical filter unit cell element for high resolution RF signal processing in silicon photonics,” Optical Fiber Communication Conference 2010, paper OWJ4 (2010).
  7. M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol.27(12), 2105–2110 (2009).
    [CrossRef]
  8. H. W. Chen, A. W. Fang, J. Bovington, J. Peters, and J. Bowers, “Hybrid silicon tunable filter based on a Mach-Zehnder interferometer and ring resonantor,” in Proc. Microwave Photonics, Valencia, Spain, 2009, pp. 1–4.
  9. S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
    [CrossRef]
  10. S. J. Xiao, M. H. Khan, H. Shen, and M. H. Qi, “Multiple-channel silicon micro-resonator based filters for WDM applications,” Opt. Express15(12), 7489–7498 (2007).
    [CrossRef] [PubMed]
  11. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express15(22), 14765–14771 (2007).
    [CrossRef] [PubMed]
  12. P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express18(23), 23784–23789 (2010).
    [CrossRef] [PubMed]
  13. N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Sel. Areas Comm.8(6), 1120–1127 (1990).
    [CrossRef]
  14. V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol.29(8), 1182–1205 (2011).
    [CrossRef]
  15. I. Gasulla and J. Capmany, “Analytical model and figures of merit for filtered microwave photonic links,” Opt. Express19(20), 19758–19774 (2011).
    [CrossRef] [PubMed]
  16. A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” IEEE J. Lightw. Technol.29(16), 2394–2401 (2011).
    [CrossRef]
  17. C. Madsen and J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, 1999), Chap. 4.
  18. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express15(22), 14467–14475 (2007).
    [CrossRef] [PubMed]
  19. P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Downconversion and linearization of X- and K-band analog photonic links using digital post-compensation,” Optical Fiber Communication Conference 2013, paper JW2A.59 (2013).
  20. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express18(17), 18278–18283 (2010).
    [CrossRef] [PubMed]
  21. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett.37(20), 4236–4238 (2012).
    [CrossRef] [PubMed]

2013

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightw. Technol.31(4), 571–586 (2013).
[CrossRef]

2012

2011

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol.29(8), 1182–1205 (2011).
[CrossRef]

I. Gasulla and J. Capmany, “Analytical model and figures of merit for filtered microwave photonic links,” Opt. Express19(20), 19758–19774 (2011).
[CrossRef] [PubMed]

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” IEEE J. Lightw. Technol.29(16), 2394–2401 (2011).
[CrossRef]

2010

2009

2007

2006

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightw. Technol.24(12), 4600–4615 (2006).
[CrossRef]

1990

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Sel. Areas Comm.8(6), 1120–1127 (1990).
[CrossRef]

Absil, P.

Agarwal, A.

Asghari, M.

Banwell, T.

Beals, M.

Beattie, J.

Biberman, A.

Bogaerts, W.

Bucholtz, F.

Campillo, A. L.

Capmany, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightw. Technol.31(4), 571–586 (2013).
[CrossRef]

I. Gasulla and J. Capmany, “Analytical model and figures of merit for filtered microwave photonic links,” Opt. Express19(20), 19758–19774 (2011).
[CrossRef] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Carothers, D.

Chen, Y. K.

Devgan, P. S.

Dexter, J. L.

Ding, Z.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Djordjevic, S. S.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Dong, P.

Fathpour, S.

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightw. Technol.24(12), 4600–4615 (2006).
[CrossRef]

Feng, D.

Feng, N.-N.

Fontaine, N. K.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Gasulla, I.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightw. Technol.31(4), 571–586 (2013).
[CrossRef]

I. Gasulla and J. Capmany, “Analytical model and figures of merit for filtered microwave photonic links,” Opt. Express19(20), 19758–19774 (2011).
[CrossRef] [PubMed]

Gill, D. M.

Guan, B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Ibrahim, S.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Jalali, B.

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightw. Technol.24(12), 4600–4615 (2006).
[CrossRef]

Jinguji, K.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Sel. Areas Comm.8(6), 1120–1127 (1990).
[CrossRef]

Kawachi, M.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Sel. Areas Comm.8(6), 1120–1127 (1990).
[CrossRef]

Khan, M. H.

Kimerling, L. C.

Kominato, T.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Sel. Areas Comm.8(6), 1120–1127 (1990).
[CrossRef]

Lee, D. C.

Lepage, G.

Liang, H.

Lipson, M.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Lloret, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightw. Technol.31(4), 571–586 (2013).
[CrossRef]

Luff, B. J.

Luo, L. W.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

McKinney, J. D.

Menendez, R.

Michel, J.

Mora, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightw. Technol.31(4), 571–586 (2013).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Okamoto, K.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Patel, S. S.

Poitras, C. B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Pomerene, A.

Qi, M.

Qi, M. H.

Qian, W.

Rasras, M. S.

Roelkens, G.

Sales, S.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightw. Technol.31(4), 571–586 (2013).
[CrossRef]

Sancho, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightw. Technol.31(4), 571–586 (2013).
[CrossRef]

Selvaraja, S.

Shaw, M. J.

Shen, H.

Sugita, A.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Sel. Areas Comm.8(6), 1120–1127 (1990).
[CrossRef]

Takato, N.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Sel. Areas Comm.8(6), 1120–1127 (1990).
[CrossRef]

Timurdogan, E.

Toba, H.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Sel. Areas Comm.8(6), 1120–1127 (1990).
[CrossRef]

Toliver, P.

Tu, K. Y.

Urick, V. J.

Van Thourhout, D.

Verheyen, P.

Vermeulen, D.

Watts, M. R.

White, A. E.

Williams, K. J.

Woodward, T. K.

Wright, J. B.

Xiao, S.

Xiao, S. J.

Yao, J.

Yoo, S. J. B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

Zhou, L.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

IEEE J. Lightw. Technol.

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightw. Technol.24(12), 4600–4615 (2006).
[CrossRef]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightw. Technol.31(4), 571–586 (2013).
[CrossRef]

A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” IEEE J. Lightw. Technol.29(16), 2394–2401 (2011).
[CrossRef]

IEEE J. Sel. Areas Comm.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Sel. Areas Comm.8(6), 1120–1127 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully reconfigurable silicon photonic lattice filters with four cascaded unit cells,” IEEE Photon. Technol. Lett.23(1), 42–44 (2011).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

C. Madsen and J. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, 1999), Chap. 4.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Downconversion and linearization of X- and K-band analog photonic links using digital post-compensation,” Optical Fiber Communication Conference 2013, paper JW2A.59 (2013).

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” arXiv:1211.4114 (2012).

P. Toliver, R. Menendez, T. Banwell, A. Agarwal, T. K. Woodward, N.-N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, and M. Ashghari, “A programmable optical filter unit cell element for high resolution RF signal processing in silicon photonics,” Optical Fiber Communication Conference 2010, paper OWJ4 (2010).

H. W. Chen, A. W. Fang, J. Bovington, J. Peters, and J. Bowers, “Hybrid silicon tunable filter based on a Mach-Zehnder interferometer and ring resonantor,” in Proc. Microwave Photonics, Valencia, Spain, 2009, pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the N-stage cascaded MZIs tunable filter, in which each stage of the filter can be changed independently.

Fig. 2
Fig. 2

Zeros diagram of three-stage filter. Zeros for first stage (green), second stage (yellow) and the third stage (red). The angel covered by the blue line represents the amplitude of Ω, and the arrow stands for the positive direction. Δ Ω 3dB is corresponding to the 3-dB bandwidth of filter.

Fig. 3
Fig. 3

Simulated amplitude and phase response of multi-stage cascaded MZIs filter. (a) N = 1, (b) N = 3, (c) N = 5.

Fig. 4
Fig. 4

Proposed optical processor with enhanced FSR. (a) Micrograph of the cascaded MZI filter. (b) Measured amplitude and phase of the filter.

Fig. 5
Fig. 5

Experiment setup of the downconversion APL employing the proposed silicon based signal processor.

Fig. 6
Fig. 6

Experimental results of the APL application. (a) The optical LO coupling with the signal filtered out by the proposed filter, (b) electrical spectrum of downconverted IF signal, (c) the measured SFDR.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H 11 = i=1 N ( 1 κ 2i1 1 κ 2i e j ϕ i κ 2i1 κ 2i γ i e jβ( 2 (i1) L) ) ,
H 11 (1) N (1+ z 2 (N1) )(1+ z 2 (N2) )(1+ z 2 (N3) )...(1+ z 1 ),
FSR=FS R N =(c/ n eff )/( 2 (N1) L),

Metrics