Abstract

A microfiber-coupled dual-rail nanobeam resonator is proposed and demonstrated. The dual-rail scheme is employed to encourage the overlap between the light emitter and the air mode. The one-dimensional resonant cavity is formed by contacting a curved microfiber with the dual-rail nanobeam. The finite width of the dual-rail nanobeam turns out to be advantageous for both out-coupling with the microfiber and broader tuning of resonant wavelength. By employing InGaAsP quantum well gain medium, a simple and robust reconfigurable laser is created. Experimentally we measure a quality factor of 11,000 and out-coupling efficiency of 30%. The spontaneous emission factor (β) of the nanobeam laser is measured to be 0.16. Computationally we identified a resonant cavity with a quality factor over 6 × 105 and out-coupling efficiency over 90%.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
    [CrossRef]
  2. M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, (2012).
    [CrossRef]
  3. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
    [CrossRef] [PubMed]
  4. T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
    [CrossRef] [PubMed]
  5. E. Weidner, S. Combrie, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett.90(10), 101118 (2007).
    [CrossRef]
  6. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009).
    [CrossRef] [PubMed]
  7. E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
    [CrossRef]
  8. Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. Frank, S. Tang, R. Illic, and M. Loncar, “Ultrasensitive On-Chip Photonic Crystal Nanobeam Sensor using Optical Bistability,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011), paper QThH6.
  9. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express16(15), 11095–11102 (2008).
    [CrossRef] [PubMed]
  10. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
    [CrossRef]
  11. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
    [CrossRef]
  12. B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K. S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010).
    [CrossRef] [PubMed]
  13. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express18(9), 8781–8789 (2010).
    [CrossRef] [PubMed]
  14. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010).
    [CrossRef]
  15. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
    [CrossRef] [PubMed]
  16. M.-K. Kim, I.-K. Hwang, M.-K. Seo, and Y.-H. Lee, “Reconfigurable microfiber-coupled photonic crystal resonator,” Opt. Express15(25), 17241–17247 (2007).
    [CrossRef] [PubMed]
  17. J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express17(15), 13009–13016 (2009).
    [CrossRef] [PubMed]
  18. M.-K. Kim, J.-Y. Kim, J.-H. Kang, B.-H. Ahn, and Y.-H. Lee, “On-demand photonic crystal resonators,” Laser & Photon. Rev.5(4), 479–495 (2011).
    [CrossRef]
  19. S. L. Chuang, Physics of Photonic Devices (John Wiley & Sons, 2009), Chap. 7.
  20. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
    [CrossRef]
  21. B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high- Q photonic double-heterostructure nanocavities,” New J. Phys.8(9), 209 (2006).
    [CrossRef]
  22. I. Karnadi, J.-Y. Kim, B.-H. Ahn, H.-J. Lim, and Y.-H. Lee, “Efficient photon collection from reconfigurable photonic crystal slab resonator operating at short wavelengths,” J. Opt. Soc. Am. B29(10), 2669 (2012).
    [CrossRef]
  23. J. J. Childs, K. An, R. R. Dasari, and M. S. Feld, “Single atom emission in an optical resonator,” in Cavity Quantum Electrodynamics, P. R. Berman, ed. (Academic Press, 1994), pp. 325–379.
  24. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett.87(15), 157401 (2001).
    [CrossRef] [PubMed]
  25. S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express19(24), 24055–24060 (2011).
    [CrossRef] [PubMed]
  26. H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  27. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.87(13), 131107 (2005).
    [CrossRef]
  28. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2011).
  29. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
    [CrossRef] [PubMed]
  30. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron.38(10), 1353–1365 (2002).
    [CrossRef]
  31. H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84(7), 1067–1069 (2004).
    [CrossRef]
  32. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express19(24), 24055–24060 (2011).
[CrossRef] [PubMed]

M.-K. Kim, J.-Y. Kim, J.-H. Kang, B.-H. Ahn, and Y.-H. Lee, “On-demand photonic crystal resonators,” Laser & Photon. Rev.5(4), 479–495 (2011).
[CrossRef]

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
[CrossRef]

2010 (5)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010).
[CrossRef]

B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K. S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010).
[CrossRef] [PubMed]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express18(9), 8781–8789 (2010).
[CrossRef] [PubMed]

2009 (4)

J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express17(15), 13009–13016 (2009).
[CrossRef] [PubMed]

L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (3)

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high- Q photonic double-heterostructure nanocavities,” New J. Phys.8(9), 209 (2006).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
[CrossRef] [PubMed]

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

2005 (3)

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.87(13), 131107 (2005).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

2004 (1)

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84(7), 1067–1069 (2004).
[CrossRef]

2002 (1)

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron.38(10), 1353–1365 (2002).
[CrossRef]

2001 (1)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett.87(15), 157401 (2001).
[CrossRef] [PubMed]

Ahn, B.-H.

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
[CrossRef] [PubMed]

Asano, T.

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high- Q photonic double-heterostructure nanocavities,” New J. Phys.8(9), 209 (2006).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Baba, T.

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
[CrossRef] [PubMed]

Bakarov, A. K.

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
[CrossRef]

Bimberg, D.

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett.87(15), 157401 (2001).
[CrossRef] [PubMed]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett.87(15), 157401 (2001).
[CrossRef] [PubMed]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
[CrossRef] [PubMed]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Cassette, S.

E. Weidner, S. Combrie, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett.90(10), 101118 (2007).
[CrossRef]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Choi, Y. S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
[CrossRef] [PubMed]

Combrie, S.

E. Weidner, S. Combrie, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett.90(10), 101118 (2007).
[CrossRef]

de Rossi, A.

E. Weidner, S. Combrie, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett.90(10), 101118 (2007).
[CrossRef]

Deotare, P.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010).
[CrossRef]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Dupuis, R.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010).
[CrossRef]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Ellis, B.

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Gong, Y.

Haisler, V. A.

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
[CrossRef]

Haret, L.-D.

Harris, J. S.

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
[CrossRef] [PubMed]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
[CrossRef] [PubMed]

Huang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010).
[CrossRef]

Huh, J.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron.38(10), 1353–1365 (2002).
[CrossRef]

Hwang, I.-K.

M.-K. Kim, I.-K. Hwang, M.-K. Seo, and Y.-H. Lee, “Reconfigurable microfiber-coupled photonic crystal resonator,” Opt. Express15(25), 17241–17247 (2007).
[CrossRef] [PubMed]

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.87(13), 131107 (2005).
[CrossRef]

Hwang, J.-K.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron.38(10), 1353–1365 (2002).
[CrossRef]

Jeong, K.-Y.

Kang, J.-H.

M.-K. Kim, J.-Y. Kim, J.-H. Kang, B.-H. Ahn, and Y.-H. Lee, “On-demand photonic crystal resonators,” Laser & Photon. Rev.5(4), 479–495 (2011).
[CrossRef]

B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K. S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010).
[CrossRef] [PubMed]

Karnadi, I.

Khan, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Kim, J.-S.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron.38(10), 1353–1365 (2002).
[CrossRef]

Kim, J.-Y.

Kim, K. S.

Kim, M.-K.

Kim, S.

Kim, S.-H.

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.87(13), 131107 (2005).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron.38(10), 1353–1365 (2002).
[CrossRef]

Kim, S.-K.

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.87(13), 131107 (2005).
[CrossRef]

Kira, G.

Kita, S.

Kuramochi, E.

Kuramoti, E.

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84(7), 1067–1069 (2004).
[CrossRef]

Kwon, S.-H.

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett.87(15), 157401 (2001).
[CrossRef] [PubMed]

Lee, S. H.

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.87(13), 131107 (2005).
[CrossRef]

Lee, Y.-H.

I. Karnadi, J.-Y. Kim, B.-H. Ahn, H.-J. Lim, and Y.-H. Lee, “Efficient photon collection from reconfigurable photonic crystal slab resonator operating at short wavelengths,” J. Opt. Soc. Am. B29(10), 2669 (2012).
[CrossRef]

S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express19(24), 24055–24060 (2011).
[CrossRef] [PubMed]

M.-K. Kim, J.-Y. Kim, J.-H. Kang, B.-H. Ahn, and Y.-H. Lee, “On-demand photonic crystal resonators,” Laser & Photon. Rev.5(4), 479–495 (2011).
[CrossRef]

B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K. S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010).
[CrossRef] [PubMed]

J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express17(15), 13009–13016 (2009).
[CrossRef] [PubMed]

M.-K. Kim, I.-K. Hwang, M.-K. Seo, and Y.-H. Lee, “Reconfigurable microfiber-coupled photonic crystal resonator,” Opt. Express15(25), 17241–17247 (2007).
[CrossRef] [PubMed]

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.87(13), 131107 (2005).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron.38(10), 1353–1365 (2002).
[CrossRef]

Lim, H.-J.

Lochmann, A.

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
[CrossRef]

Loncar, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Min, B.

Mitsugi, S.

Noda, S.

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high- Q photonic double-heterostructure nanocavities,” New J. Phys.8(9), 209 (2006).
[CrossRef]

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Notomi, M.

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett.87(15), 157401 (2001).
[CrossRef] [PubMed]

Öztürk, M.

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
[CrossRef]

Painter, O.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Park, H.-G.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron.38(10), 1353–1365 (2002).
[CrossRef]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
[CrossRef] [PubMed]

Quan, Q.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
[CrossRef] [PubMed]

Ryou, J.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010).
[CrossRef]

Ryu, H. Y.

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84(7), 1067–1069 (2004).
[CrossRef]

Ryu, H.-Y.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron.38(10), 1353–1365 (2002).
[CrossRef]

Sarmiento, T.

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett.87(15), 157401 (2001).
[CrossRef] [PubMed]

Segawa, T.

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84(7), 1067–1069 (2004).
[CrossRef]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett.87(15), 157401 (2001).
[CrossRef] [PubMed]

Seo, M.-K.

Shambat, G.

Shin, J.-H.

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Song, B.-S.

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high- Q photonic double-heterostructure nanocavities,” New J. Phys.8(9), 209 (2006).
[CrossRef]

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Song, J.-H.

Stock, E.

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
[CrossRef]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
[CrossRef] [PubMed]

Tanabe, T.

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express16(15), 11095–11102 (2008).
[CrossRef] [PubMed]

Töfflinger, J. A.

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
[CrossRef]

Toropov, A. I.

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
[CrossRef]

Tran, N.-V.-Q.

E. Weidner, S. Combrie, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett.90(10), 101118 (2007).
[CrossRef]

Uesugi, T.

Unrau, W.

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
[CrossRef]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Vuckovic, J.

Weidner, E.

E. Weidner, S. Combrie, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett.90(10), 101118 (2007).
[CrossRef]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett.87(15), 157401 (2001).
[CrossRef] [PubMed]

Yang, J.-K.

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.87(13), 131107 (2005).
[CrossRef]

Zhang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010).
[CrossRef]

Appl. Phys. Lett. (6)

E. Weidner, S. Combrie, A. de Rossi, N.-V.-Q. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett.90(10), 101118 (2007).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Loncar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010).
[CrossRef]

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.87(13), 131107 (2005).
[CrossRef]

H. Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett.84(7), 1067–1069 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron.38(10), 1353–1365 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser & Photon. Rev. (1)

M.-K. Kim, J.-Y. Kim, J.-H. Kang, B.-H. Ahn, and Y.-H. Lee, “On-demand photonic crystal resonators,” Laser & Photon. Rev.5(4), 479–495 (2011).
[CrossRef]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Nat. Photonics (1)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Nature (1)

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

New J. Phys. (1)

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high- Q photonic double-heterostructure nanocavities,” New J. Phys.8(9), 209 (2006).
[CrossRef]

Opt. Express (10)

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

M.-K. Kim, I.-K. Hwang, M.-K. Seo, and Y.-H. Lee, “Reconfigurable microfiber-coupled photonic crystal resonator,” Opt. Express15(25), 17241–17247 (2007).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express16(15), 11095–11102 (2008).
[CrossRef] [PubMed]

J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express17(15), 13009–13016 (2009).
[CrossRef] [PubMed]

L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009).
[CrossRef] [PubMed]

B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K. S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010).
[CrossRef] [PubMed]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express18(9), 8781–8789 (2010).
[CrossRef] [PubMed]

S. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, K. S. Kim, and Y.-H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express19(24), 24055–24060 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong Dephasing Time in InGaAs Quantum Dots,” Phys. Rev. Lett.87(15), 157401 (2001).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett.96(12), 127404 (2006).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A. I. Toropov, A. K. Bakarov, V. A. Haisler, and D. Bimberg, “High-speed single-photon source based on self-organized quantum dots,” Semicond. Sci. Technol.26(1), 014003 (2011).
[CrossRef]

Other (6)

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. Frank, S. Tang, R. Illic, and M. Loncar, “Ultrasensitive On-Chip Photonic Crystal Nanobeam Sensor using Optical Bistability,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011), paper QThH6.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, (2012).
[CrossRef]

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2011).

H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

S. L. Chuang, Physics of Photonic Devices (John Wiley & Sons, 2009), Chap. 7.

J. J. Childs, K. An, R. R. Dasari, and M. S. Feld, “Single atom emission in an optical resonator,” in Cavity Quantum Electrodynamics, P. R. Berman, ed. (Academic Press, 1994), pp. 325–379.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Dispersion characteristics of a dual-rail structure. a = 480 nm, t = 220 nm, r = 0.35a, w = 1.2a, b = 2.7a as defined in (b). The red solid line is for the air band. The blue and purple solid lines are for the 2nd and 1st dielectric band. (b) The dual-rail structure is defined by lattice constant a, radius of air holes r, spacing between rails w, and beam width b. (c)-(e) Ey field profile (left) and E-field energy density profile (right) of (c) the air band, (d) the 2nd dielectric band and (e) the 1st dielectric band, respectively.

Fig. 2
Fig. 2

Electric field distributions of microfiber-coupled dual-rail nanobeam resonant modes. a = 480 nm. t = 220 nm, r = 0.35a. w = 1.2a. b = 2.7a. Fiber diameter D is 1.1 µm. Radius of curvature of the fiber R is 70 µm. (a) The grey region is the TE-like bandgap. The black curve shows the cutoff of the air band. The red and blue curves are Ey fields for the 1st and 2nd cavity modes, respectively. (b) Ey field of the 1st cavity mode, (c)-(d) E-field energy density profiles of the 1st cavity mode.

Fig. 3
Fig. 3

Comparison of electric fields of air bands in dual-rail nanobeam and conventional nanobeam. The figures are |(E)|2 profiles (colors) with electric field (arrows) for (a) dual-rail nanobeam and (b) conventional nanobeam. The lattice constant, thickness, radius of air holes are 500 nm, 220 nm, 165 nm, 800 nm respectively.

Fig. 4
Fig. 4

Mode volume and out-coupling efficiency of the microfiber-coupled dual-rail nanobeam resonator, calculated by FDTD as a function of (a) r with constraints w = 1.2a, b = 2.7a, radius of curvature R = 70 µm, (b) w with constraints r = 0.35a, b = 2.7a, R = 70 µm. (c) Q and out-coupling efficiency as a function of b with constraints r = 0.35a, w = 1.2a, R = 70 µm. (d) Resonant wavelength and Q as a function of R with constraints r = 0.35a, w = 1.2a, b = 2.7a. Lattice constant and thickness are commonly 480 nm and 220 nm.

Fig. 5
Fig. 5

(a) A side view of the dual-rail nanobeam. (b) A top view of the dual-rail nanobeam. Both pictures were taken by SEM. (c) An optical image of the curved microfiber.

Fig. 6
Fig. 6

Transmission spectra. The yellow vertical line is bandedge of the air band. (a) Transmission Spectrum of the microfiber-coupled dual-rail nanobeam cavity. The rightmost dip indicates resonance with the 1st cavity mode. The second dip is from the 2nd cavity mode. (b) Transmission spectra (different sample from (a)) of the cavity for different curvature radius R of the microfiber. Each spectrum is translated upward for reader’s convenience. The blue shaded is the tuning range for the 1st cavity mode.

Fig. 7
Fig. 7

(a) The L-L curve of the 1st cavity mode. The dots are measured data. The horizontal axis (Light In) represents the upper bound of peak pump power. It is obtained by subtracting the transmitted power with fiber in contact from that with fiber not in contact. It includes contributions other than the quantum well absorption such as the scattering losses at the contact point. The solid and dashed curves are the solutions of rate equations for different spontaneous emission factor β. (b) Laser spectrum at twice large pumping power of laser threshold. The 1st cavity mode is at a wavelength of 1602 nm and the 2nd cavity mode is at 1593 nm. (c) The laser is tuned −3 nm in wavelength reducing R of microfiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dN dt = R p (AN+C N 3 )B N 2 c n eff GΓP, dP dt = c n eff GΓP+βB N 2 P τ ph ,

Metrics