Abstract

Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83 %. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt.26(21), 4616–4619 (1987).
    [CrossRef] [PubMed]
  2. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt.33(10), 1844–1853 (1994).
    [CrossRef] [PubMed]
  3. A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32(6), 479–483 (1995).
    [CrossRef]
  4. A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
    [CrossRef]
  5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195March (2002).
    [CrossRef]
  6. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duscaronek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
    [CrossRef]
  7. J-W. Pan, Z-B. Chen, C-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84(2), 777–838 (2012).
    [CrossRef]
  8. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007).
    [CrossRef]
  9. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, 464(7285), 45–53 (2010).
    [CrossRef] [PubMed]
  10. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A66(4), 042303 (2002).
    [CrossRef]
  11. E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys6, 100 (2004).
    [CrossRef]
  12. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys Rev A66(5), 053805 (2002).
    [CrossRef]
  13. J. H. Shapiro and F. N. Wong, “On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls,” Opt. Lett.32(18), 2698–2700 (2007).
    [CrossRef] [PubMed]
  14. R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Phys. Rev. A68, 022312 (2003).
    [CrossRef]
  15. C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A85(1), 010301 (2012).
    [CrossRef]
  16. D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
    [CrossRef]
  17. Y-G. Tang and Q. Liu, Private communication.
  18. F. Selleri and A. Zeilinger, “Local deterministic description of Einstein-Podolsky-Rosen experiments,” Found. Phys.18, 1141–1158 (1988).
    [CrossRef]
  19. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity source of Polarization-Entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
    [CrossRef] [PubMed]
  20. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A.73(1), 012316 (2006).
    [CrossRef]
  21. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Exp.15(23), 15377–15386 (2007).
    [CrossRef]
  22. P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008).
    [CrossRef]
  23. C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
    [CrossRef]
  24. B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012).
    [CrossRef]
  25. A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp.16(5), 3032–3040 (2008).
    [CrossRef]
  26. R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81(5), 053805 (2010).
    [CrossRef]
  27. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
    [CrossRef]
  28. K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett.66(15), 1998–2000 (1995).
    [CrossRef]
  29. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Exp.19(10), 9102–9110 (2011).
    [CrossRef]
  30. D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. on Appl. Superc.17, 699–704 (2007).
    [CrossRef]
  31. D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A71(6), 061803 (2005).
    [CrossRef]
  32. M. Giustina, in preparation.
  33. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
    [CrossRef]

2012 (4)

J-W. Pan, Z-B. Chen, C-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84(2), 777–838 (2012).
[CrossRef]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A85(1), 010301 (2012).
[CrossRef]

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012).
[CrossRef]

2011 (4)

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Exp.19(10), 9102–9110 (2011).
[CrossRef]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

2010 (2)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, 464(7285), 45–53 (2010).
[CrossRef] [PubMed]

R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81(5), 053805 (2010).
[CrossRef]

2009 (1)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duscaronek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

2008 (2)

A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp.16(5), 3032–3040 (2008).
[CrossRef]

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008).
[CrossRef]

2007 (4)

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Exp.15(23), 15377–15386 (2007).
[CrossRef]

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. on Appl. Superc.17, 699–704 (2007).
[CrossRef]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007).
[CrossRef]

J. H. Shapiro and F. N. Wong, “On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls,” Opt. Lett.32(18), 2698–2700 (2007).
[CrossRef] [PubMed]

2006 (1)

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A.73(1), 012316 (2006).
[CrossRef]

2005 (1)

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A71(6), 061803 (2005).
[CrossRef]

2004 (1)

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys6, 100 (2004).
[CrossRef]

2003 (1)

R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Phys. Rev. A68, 022312 (2003).
[CrossRef]

2002 (3)

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys Rev A66(5), 053805 (2002).
[CrossRef]

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A66(4), 042303 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195March (2002).
[CrossRef]

1995 (3)

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32(6), 479–483 (1995).
[CrossRef]

K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett.66(15), 1998–2000 (1995).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity source of Polarization-Entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

1994 (1)

1988 (1)

F. Selleri and A. Zeilinger, “Local deterministic description of Einstein-Podolsky-Rosen experiments,” Found. Phys.18, 1141–1158 (1988).
[CrossRef]

1987 (1)

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

Amemiya, K.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

Assmann, C.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. on Appl. Superc.17, 699–704 (2007).
[CrossRef]

Avella, A.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duscaronek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

Bennink, R. S.

R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81(5), 053805 (2010).
[CrossRef]

Beyer, J.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. on Appl. Superc.17, 699–704 (2007).
[CrossRef]

Branciard, C.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A85(1), 010301 (2012).
[CrossRef]

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

Branning, D.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys Rev A66(5), 053805 (2002).
[CrossRef]

Brida, G.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Briegel, H. J.

R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Phys. Rev. A68, 022312 (2003).
[CrossRef]

Browne, D. E.

R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Phys. Rev. A68, 022312 (2003).
[CrossRef]

Brunner, N.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012).
[CrossRef]

Calkins, B.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Exp.19(10), 9102–9110 (2011).
[CrossRef]

Castelletto, S.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys Rev A66(5), 053805 (2002).
[CrossRef]

Cavalcanti, E. G.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A85(1), 010301 (2012).
[CrossRef]

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duscaronek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

Chen, Z-B.

J-W. Pan, Z-B. Chen, C-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84(2), 777–838 (2012).
[CrossRef]

Chiao, R. Y.

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

Cohen, O.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Datla, R. U.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32(6), 479–483 (1995).
[CrossRef]

de Almeida, M. P.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

Degiovanni, I. P.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007).
[CrossRef]

Drung, D.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. on Appl. Superc.17, 699–704 (2007).
[CrossRef]

Duscaronek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duscaronek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

Eberhard, P. H.

Fedrizzi, A.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Exp.15(23), 15377–15386 (2007).
[CrossRef]

Fiorentino, M.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A.73(1), 012316 (2006).
[CrossRef]

Franson, J. D.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A66(4), 042303 (2002).
[CrossRef]

Fujii, G.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

Fujino, H.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

Fukuda, D.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

Genovese, M.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Gerrits, T.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

Gillett, G.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195March (2002).
[CrossRef]

Giustina, M.

M. Giustina, in preparation.

Gramegna, M.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Gruber, S. M.

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Exp.19(10), 9102–9110 (2011).
[CrossRef]

Herbst, T.

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Exp.15(23), 15377–15386 (2007).
[CrossRef]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

Inoue, S.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

Irwin, K. D.

K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett.66(15), 1998–2000 (1995).
[CrossRef]

Ishii, H.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

Itatani, T.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A66(4), 042303 (2002).
[CrossRef]

Jeffrey, E.

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys6, 100 (2004).
[CrossRef]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, 464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Jennewein, T.

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Exp.15(23), 15377–15386 (2007).
[CrossRef]

Kim, T.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A.73(1), 012316 (2006).
[CrossRef]

Kirste, A.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. on Appl. Superc.17, 699–704 (2007).
[CrossRef]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007).
[CrossRef]

Kwiat, P. G.

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys6, 100 (2004).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity source of Polarization-Entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt.33(10), 1844–1853 (1994).
[CrossRef] [PubMed]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, 464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, 464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Langford, N. K.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012).
[CrossRef]

Lita, A.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

Lita, A. E.

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Exp.19(10), 9102–9110 (2011).
[CrossRef]

A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp.16(5), 3032–3040 (2008).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A71(6), 061803 (2005).
[CrossRef]

Liu, Q.

Y-G. Tang and Q. Liu, Private communication.

Lolli, L.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Lu, C-Y.

J-W. Pan, Z-B. Chen, C-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84(2), 777–838 (2012).
[CrossRef]

Lütkenhaus, N.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duscaronek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity source of Polarization-Entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Migdall, A. L.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys Rev A66(5), 053805 (2002).
[CrossRef]

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32(6), 479–483 (1995).
[CrossRef]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007).
[CrossRef]

Miller, A. J.

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Exp.19(10), 9102–9110 (2011).
[CrossRef]

A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp.16(5), 3032–3040 (2008).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A71(6), 061803 (2005).
[CrossRef]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, 464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Monticone, E.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007).
[CrossRef]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, 464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Nam, S.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Exp.19(10), 9102–9110 (2011).
[CrossRef]

A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp.16(5), 3032–3040 (2008).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A71(6), 061803 (2005).
[CrossRef]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007).
[CrossRef]

Numata, T.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, 464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Orszak, J. S.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32(6), 479–483 (1995).
[CrossRef]

Pan, J-W.

J-W. Pan, Z-B. Chen, C-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84(2), 777–838 (2012).
[CrossRef]

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duscaronek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

Peters, M.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. on Appl. Superc.17, 699–704 (2007).
[CrossRef]

Peters, N. A.

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys6, 100 (2004).
[CrossRef]

Petroff, M. D.

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A66(4), 042303 (2002).
[CrossRef]

Poppe, A.

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Exp.15(23), 15377–15386 (2007).
[CrossRef]

Portesi, C.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Rajteri, M.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007).
[CrossRef]

Ramelow, S.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012).
[CrossRef]

Rarity, J. G.

Rastello, M. L.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Raussendorf, R.

R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Phys. Rev. A68, 022312 (2003).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195March (2002).
[CrossRef]

Ridley, K. D.

Rosenberg, D.

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A71(6), 061803 (2005).
[CrossRef]

Ruede, F.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. on Appl. Superc.17, 699–704 (2007).
[CrossRef]

Scarani, V.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A85(1), 010301 (2012).
[CrossRef]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duscaronek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

Schurig, T.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. on Appl. Superc.17, 699–704 (2007).
[CrossRef]

Selleri, F.

F. Selleri and A. Zeilinger, “Local deterministic description of Einstein-Podolsky-Rosen experiments,” Found. Phys.18, 1141–1158 (1988).
[CrossRef]

Sergienko, A.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32(6), 479–483 (1995).
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity source of Polarization-Entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Shapiro, J. H.

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity source of Polarization-Entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Shih, Y. H.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32(6), 479–483 (1995).
[CrossRef]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

Silberhorn, C.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Smith, B. J.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Smith, D. H.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

Söller, C.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Steinberg, A. M.

Steinlechner, F.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012).
[CrossRef]

Tang, Y-G.

Y-G. Tang and Q. Liu, Private communication.

Tapster, P. R.

Taralli, E.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195March (2002).
[CrossRef]

Traina, P.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Trojek, P.

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008).
[CrossRef]

Tsuchida, H.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

Ursin, R.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012).
[CrossRef]

Vayshenker, I.

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Exp.19(10), 9102–9110 (2011).
[CrossRef]

Walborn, S. P.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A85(1), 010301 (2012).
[CrossRef]

Walmsley, I. A.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Weinfurter, H.

J-W. Pan, Z-B. Chen, C-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84(2), 777–838 (2012).
[CrossRef]

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity source of Polarization-Entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Weinhold, T. J.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

White, A. G.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

White, M.

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Wiseman, H. M.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A85(1), 010301 (2012).
[CrossRef]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012).
[CrossRef]

Wittmann, B.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012).
[CrossRef]

Wong, F. N.

Wong, F. N. C.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A.73(1), 012316 (2006).
[CrossRef]

Yoshizawa, A.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

Zama, T.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195March (2002).
[CrossRef]

Zeilinger, A.

J-W. Pan, Z-B. Chen, C-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84(2), 777–838 (2012).
[CrossRef]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012).
[CrossRef]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Exp.15(23), 15377–15386 (2007).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity source of Polarization-Entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

F. Selleri and A. Zeilinger, “Local deterministic description of Einstein-Podolsky-Rosen experiments,” Found. Phys.18, 1141–1158 (1988).
[CrossRef]

Zukowski, M.

J-W. Pan, Z-B. Chen, C-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84(2), 777–838 (2012).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008).
[CrossRef]

K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett.66(15), 1998–2000 (1995).
[CrossRef]

Found. Phys. (1)

F. Selleri and A. Zeilinger, “Local deterministic description of Einstein-Podolsky-Rosen experiments,” Found. Phys.18, 1141–1158 (1988).
[CrossRef]

IEEE Trans. on Appl. Superc. (1)

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. on Appl. Superc.17, 699–704 (2007).
[CrossRef]

Metrologia (1)

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia32(6), 479–483 (1995).
[CrossRef]

Nature (1)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, 464(7285), 45–53 (2010).
[CrossRef] [PubMed]

Nature Communications (1)

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef]

New J. Phys (2)

E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” New J. Phys6, 100 (2004).
[CrossRef]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys14(5), 053030 (2012).
[CrossRef]

Opt. Exp. (5)

A. E. Lita, A. J. Miller, and S. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Exp.16(5), 3032–3040 (2008).
[CrossRef]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Exp.15(23), 15377–15386 (2007).
[CrossRef]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Exp.19(10), 9102–9110 (2011).
[CrossRef]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Exp.19(2), 870–875 (2011).
[CrossRef]

A. Avella, G. Brida, I. P. Degiovanni, M. Genovese, M. Gramegna, L. Lolli, E. Monticone, C. Portesi, M. Rajteri, M. L. Rastello, E. Taralli, P. Traina, and M. White, “Self consistent, absolute calibration technique for photon number resolving detectors,” Opt. Exp.19(23), 23249–23257 (2011).
[CrossRef]

Opt. Lett. (1)

Phys Rev A (1)

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys Rev A66(5), 053805 (2002).
[CrossRef]

Phys. Rev. A (6)

T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” Phys. Rev. A66(4), 042303 (2002).
[CrossRef]

R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,” Phys. Rev. A68, 022312 (2003).
[CrossRef]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A85(1), 010301 (2012).
[CrossRef]

D. Rosenberg, A. E. Lita, A. J. Miller, and S. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A71(6), 061803 (2005).
[CrossRef]

R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81(5), 053805 (2010).
[CrossRef]

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83(3), 031806 (2011).
[CrossRef]

Phys. Rev. A. (1)

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A.73(1), 012316 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity source of Polarization-Entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

Rev. Mod. Phys. (4)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195March (2002).
[CrossRef]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duscaronek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

J-W. Pan, Z-B. Chen, C-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84(2), 777–838 (2012).
[CrossRef]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007).
[CrossRef]

Other (2)

Y-G. Tang and Q. Liu, Private communication.

M. Giustina, in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Heralded single-photon source based on correlated photon pairs. Such sources are a prerequisite to a multitude of quantum optical experiments. In an ideal single-photon source, a photon detected in the heralding arm indicates a partner photon in the signal arm.

Fig. 2
Fig. 2

Experimental setup: The photon pair source is based on a 10 mm long ppKTP crystal pumped by a 405 nm diode laser in a Sagnac configuration [21] with a polarizing beam splitter (PBS). Waveplates (WPs) are used to tune the pump polarization. The pump beam is carefully shaped and focussed by two lenses (L1, L2) and split from the down-converted photon with a dichroic mirror (DM). Cut-off filters (CFs) are used to filter out the remaining 405 nm light and a narrowband interference filter (IF) in the heralding arm further suppresses any photons not originating from the down-conversion. The photon pairs are coupled into optical fibers (HP780, SMF28) that carry them into the dilution refrigerator where they are directly coupled to the TES detectors with their SQUID amplifiers (TES1, TES2) which are held at around 25 mK. The TES output signals are discriminated using threshold discrimination and are counted and analyzed by our coincidence electronics.

Fig. 3
Fig. 3

Photon signals and processed data from transition-edge sensor single-photon detectors. (a) A typical signal from a detector with four photons and different possible thresholds indicated. The top threshold detects only three of the four photons, the middle threshold counts five (one from the wiggle in the recovering edge) and the bottom threshold detects the correct four photons. (b) A “pulse height distribution,” indicating how clearly it is possible to separate the photon signals from the noise by thresholding. (c) Coincidence count rates vs. delay between the two channels. The actual data is plotted in blue with a Gaussian fit in red. Asymmetry is attributed to uneven detector jitter.

Tables (1)

Tables Icon

Table 1 Tabulated experimental results from both the analog electronics counting method and the post-processing for 100 seconds and 40 seconds of data respectively. The lower arm efficiency of the heralding arm (ratio between the coincidences and singles of the signal arm) is a consequence of the higher loss caused by the limited transmission efficiency of the narrow bandpass filter as well as a high rate of background photons in the signal arm not rejected by the cut-off filters. The post-processing method can recover counts not registered by the analog method. The one standard deviation errors are determined by Poissonian counting statistics and error propagation.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S 1 = R 0 η 1
S 2 = R 0 η 2 .
S 1 = R 0 η 1 ( 1 S 1 τ d )
S 2 = R 0 η 2 ( 1 S 2 τ d ) .
C C 0 = R 0 η 1 η 2 .
R 10 = 1 2 R 0 2 τ w η 1 ( 1 η 2 ) η 2 ( 1 η 1 ) .
R 01 = 1 2 R 0 2 τ w η 2 ( 1 η 1 ) η 1 ( 1 η 2 ) .
R 11 = 1 2 τ w R 0 2 η 1 2 η 2 2 .
C C = R 0 η 1 η 2 + τ w R 0 2 η 1 η 2 ( 1 η 1 ) ( 1 η 2 ) 1 2 τ w R 0 2 η 1 2 η 2 2 ,
C C = C C 0 ( 1 + τ w R 0 ( 1 η 1 ) ( 1 η 2 ) 1 2 τ w R 0 η 1 η 2 ) ,
C C = C C 0 ( 1 + τ w R 0 ( 1 η 1 ) ( 1 η 2 ) τ max R 0 η 1 η 2 ) .

Metrics