Abstract

We systematically study a type of plasmonic light absorber based on a monolayer of gold nano-spheres with less than 30 nm in diameters deposited on top of a continuous gold substrate. The influences of particle size, inter-particle distance, particle-substrate spacer size etc on the resonance are studied thoroughly with a 3D finite-element method. We identified that the high-absorption resonance is mainly due to gap plasmon (coupled through particle bodies) when the separation between neighboring nano-spheres is small enough, such as close to 1 nm; at larger particle separations, the resonance is dominated by particle dipoles (coupled through the host dielectric). Experimentally, an absorber was fabricated based on chemically-synthesized gold nanoparticles coated with silica shell. The absorber shows a characteristic absorption band around 810 nm with a maximum absorbance of approximately 90%, which agrees reasonably well with our numerical calculation. The fabrication technique can be easily adapted for devising efficient light absorbers of large areas.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands, 2007).
    [CrossRef]
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
    [CrossRef]
  3. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
    [CrossRef] [PubMed]
  4. M. Burresi, D. Diessel, D. v. Oosten, S. Linden, M. Wegener, and L. Kuipers, “Negative-index metamaterials: Looking into the unit cell,” Nano Lett.10, 2480–2483 (2010).
    [CrossRef] [PubMed]
  5. C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11, 579–585 (1999).
    [CrossRef]
  6. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
    [CrossRef] [PubMed]
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
    [CrossRef] [PubMed]
  8. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett.93, 121904 –121904–3 (2008).
    [CrossRef]
  9. Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie, “Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices,” Nanoscale4, 4416–4420 (2012).
    [CrossRef] [PubMed]
  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
    [CrossRef] [PubMed]
  11. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2012).
    [CrossRef]
  12. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
    [CrossRef] [PubMed]
  13. M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt.15, 025006 (2013).
    [CrossRef]
  14. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
    [CrossRef] [PubMed]
  15. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir12, 4329–4335 (1996).
    [CrossRef]
  16. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  17. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
    [CrossRef]
  18. S. Maier, Plasmonics: Fundamentals And Applications (Springer, 2007).
  19. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008).
    [CrossRef] [PubMed]
  20. C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
    [CrossRef]
  21. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012).
    [CrossRef] [PubMed]

2013 (1)

M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt.15, 025006 (2013).
[CrossRef]

2012 (5)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2012).
[CrossRef]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie, “Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices,” Nanoscale4, 4416–4420 (2012).
[CrossRef] [PubMed]

C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012).
[CrossRef] [PubMed]

2011 (2)

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

2010 (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

M. Burresi, D. Diessel, D. v. Oosten, S. Linden, M. Wegener, and L. Kuipers, “Negative-index metamaterials: Looking into the unit cell,” Nano Lett.10, 2480–2483 (2010).
[CrossRef] [PubMed]

2008 (2)

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett.93, 121904 –121904–3 (2008).
[CrossRef]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008).
[CrossRef] [PubMed]

2005 (1)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

1999 (2)

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11, 579–585 (1999).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

1996 (1)

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir12, 4329–4335 (1996).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Aizpurua, J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett.93, 121904 –121904–3 (2008).
[CrossRef]

Baumberg, J. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012).
[CrossRef] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

Borisov, A. G.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012).
[CrossRef] [PubMed]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

Brinker, C. J.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11, 579–585 (1999).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands, 2007).
[CrossRef]

Burresi, M.

M. Burresi, D. Diessel, D. v. Oosten, S. Linden, M. Wegener, and L. Kuipers, “Negative-index metamaterials: Looking into the unit cell,” Nano Lett.10, 2480–2483 (2010).
[CrossRef] [PubMed]

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

Chilkoti, A.

C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Cirac’i, C.

C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Diessel, D.

M. Burresi, D. Diessel, D. v. Oosten, S. Linden, M. Wegener, and L. Kuipers, “Negative-index metamaterials: Looking into the unit cell,” Nano Lett.10, 2480–2483 (2010).
[CrossRef] [PubMed]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Esteban, R.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012).
[CrossRef] [PubMed]

Fan, H.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11, 579–585 (1999).
[CrossRef]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef]

Giersig, M.

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir12, 4329–4335 (1996).
[CrossRef]

Giessen, H.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2012).
[CrossRef]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012).
[CrossRef] [PubMed]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Hill, R. T.

C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Kik, P. G.

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands, 2007).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008).
[CrossRef] [PubMed]

Kuipers, L.

M. Burresi, D. Diessel, D. v. Oosten, S. Linden, M. Wegener, and L. Kuipers, “Negative-index metamaterials: Looking into the unit cell,” Nano Lett.10, 2480–2483 (2010).
[CrossRef] [PubMed]

Li, Z.-Y.

Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie, “Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices,” Nanoscale4, 4416–4420 (2012).
[CrossRef] [PubMed]

Linden, S.

M. Burresi, D. Diessel, D. v. Oosten, S. Linden, M. Wegener, and L. Kuipers, “Negative-index metamaterials: Looking into the unit cell,” Nano Lett.10, 2480–2483 (2010).
[CrossRef] [PubMed]

Liu, D.

Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie, “Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices,” Nanoscale4, 4416–4420 (2012).
[CrossRef] [PubMed]

Liu, N.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2012).
[CrossRef]

Liz-Marzán, L. M.

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir12, 4329–4335 (1996).
[CrossRef]

Long, R.

Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie, “Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices,” Nanoscale4, 4416–4420 (2012).
[CrossRef] [PubMed]

Lu, Y.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11, 579–585 (1999).
[CrossRef]

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Maier, S.

S. Maier, Plasmonics: Fundamentals And Applications (Springer, 2007).

Maier, S. A.

C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Mock, J. J.

C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Mulvaney, P.

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir12, 4329–4335 (1996).
[CrossRef]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett.93, 121904 –121904–3 (2008).
[CrossRef]

Oosten, D. v.

M. Burresi, D. Diessel, D. v. Oosten, S. Linden, M. Wegener, and L. Kuipers, “Negative-index metamaterials: Looking into the unit cell,” Nano Lett.10, 2480–2483 (2010).
[CrossRef] [PubMed]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2012).
[CrossRef]

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2012).
[CrossRef]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012).
[CrossRef] [PubMed]

Schatz, G. C.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Sellinger, A.

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11, 579–585 (1999).
[CrossRef]

Smith, D. R.

C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef]

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett.93, 121904 –121904–3 (2008).
[CrossRef]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Tittl, A.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

Urzhumov, Y.

C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef]

Van Duyne, R. P.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Wang, C.

Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie, “Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices,” Nanoscale4, 4416–4420 (2012).
[CrossRef] [PubMed]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2012).
[CrossRef]

Wegener, M.

M. Burresi, D. Diessel, D. v. Oosten, S. Linden, M. Wegener, and L. Kuipers, “Negative-index metamaterials: Looking into the unit cell,” Nano Lett.10, 2480–2483 (2010).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Xie, Y.

Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie, “Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices,” Nanoscale4, 4416–4420 (2012).
[CrossRef] [PubMed]

Xiong, Y.

Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie, “Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices,” Nanoscale4, 4416–4420 (2012).
[CrossRef] [PubMed]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

Yan, M.

M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt.15, 025006 (2013).
[CrossRef]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Zhong, X.

Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie, “Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices,” Nanoscale4, 4416–4420 (2012).
[CrossRef] [PubMed]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2012).
[CrossRef]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

ACS Nano (1)

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012).
[CrossRef] [PubMed]

Adv. Mater. (2)

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: Nanostructures made easy,” Adv. Mater.11, 579–585 (1999).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater.23, 5410–5414 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2012).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in gaas solar cells,” Appl. Phys. Lett.93, 121904 –121904–3 (2008).
[CrossRef]

J. Opt. (1)

M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt.15, 025006 (2013).
[CrossRef]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Langmuir (1)

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir12, 4329–4335 (1996).
[CrossRef]

Nano Lett. (4)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

M. Burresi, D. Diessel, D. v. Oosten, S. Linden, M. Wegener, and L. Kuipers, “Negative-index metamaterials: Looking into the unit cell,” Nano Lett.10, 2480–2483 (2010).
[CrossRef] [PubMed]

Nanoscale (1)

Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie, “Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices,” Nanoscale4, 4416–4420 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Nature (2)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008).
[CrossRef] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

Science (1)

C. Cirac’i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012).
[CrossRef]

Other (2)

S. Maier, Plasmonics: Fundamentals And Applications (Springer, 2007).

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands, 2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic view of the proposed absorber.

Fig. 2
Fig. 2

Calculated absorption spectra for d = 8 nm the absorber at various interparticle separation g at normal incidence.

Fig. 3
Fig. 3

Calculated norm of electric displacement field (C/m2) at the cut plane parallel to the gold reflector and through the center of the nano-spheres for (a) g = 1 nm absorber at 680 nm wavelength and (b) g = 5 nm absorber with d = 8 nm at 560 nm wavelength for Ex polarized field at normal incidence in one unit cell.

Fig. 4
Fig. 4

Calculated absorption spectra for g = 1 nm absorber as a function of sphere diameter d at normal incidence.

Fig. 5
Fig. 5

Calculated absorption spectra for the t = s + 25 nm, d = 8 nm, g = 1.8 nm absorber (a) with bottom gold reflector (b) without bottom gold reflector as a function of s at normal incidence.

Fig. 6
Fig. 6

Calculated absorption spectra for the d = 8 nm, g = 1.8 nm absorber as incident angle increases from 0° to 80°.

Fig. 7
Fig. 7

Calculated absorption spectra for dm = 9 nm, g = 1 nm and dm = 8 nm, g = 1 nm absorber with nonuniform sphere size, in comparison with d = 10 nm, g = 1 nm and d = 8 nm, g = 3 nm absorber with identical sphere size.

Fig. 8
Fig. 8

Schematic view of the idealized silica-coated gold NPs based absorber.

Fig. 9
Fig. 9

TEM micrographs of (a) gold NPs before coating; (b) Au@SiO2 core-shell NPs.

Fig. 10
Fig. 10

SEM micrographs of the fabricated absorber.

Fig. 11
Fig. 11

Schematic setup for the reflectance measurement.

Fig. 12
Fig. 12

(a) Simulated and measured absorption spectra of the fabricated absorber at 15° angle of incidence; (b) particles sizes distribution based on 146 NPs as in Fig. 9(a).

Metrics