Abstract

In this work we present experimental evidence that the valence instability of the ytterbium ion play a key role for the observed photodarkening mechanism in Yb-doped fiber lasers. Luminescence and excitation spectroscopy performed on UV irradiated Yb/Al doped silica glass preforms and near-infrared diode pumped photodarkened fibers show a concentration increase of Yb2+ ions. A concentration decrease in Yb3+ could also be observed for the UV irradiated preform. The findings contribute to an increased understanding of the kinetic processes related to photodarkening in Yb-doped high power fiber lasers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shubin, M. Yashkov, M. Melkumov, S. Smirnov, I. Bufetov, and E. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” CLEO Europe Conference pp. CJ3–1–THU (2007).
  2. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16, 15540–15545 (2008).
    [CrossRef] [PubMed]
  3. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in Yb-doped fiber lasers by Cerium co-doping,” Opt. Lett.34, 1285–1287 (2009).
    [CrossRef] [PubMed]
  4. M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al based fiber lasers,” Proc. of SPIE6873, 68731E–1 (2008).
  5. S. Yoo, C. Basu, A. Boyland, C. Sones, J. Nilsson, J. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett.32, 1626–1628 (2007).
    [CrossRef] [PubMed]
  6. M. Engholm, L. Norin, and D. Åberg, “Strong UV-absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV-excitation,” Opt. Lett.32, 3352–3354 (2007).
    [CrossRef] [PubMed]
  7. M. Engholm and L. Norin, “Comment on “photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett.33, 1216–1216 (2008).
    [CrossRef] [PubMed]
  8. T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. of SPIE7914, 79140K (2011).
    [CrossRef]
  9. P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express16, 4688–4697 (2008).
    [CrossRef] [PubMed]
  10. P. D. Dragic, Y.-S. Liu, T. C. Galvin, and J. G. Eden, “Ultraviolet absorption and excitation spectroscopy of rare-earth-doped glass fibers derived from glassy and crystalline preforms,” Proc. of SPIE8237 (2012).
    [CrossRef]
  11. Y.-S. Liu, T. C. Galvin, T. Hawkins, J. Ballato, L. Dong, P. Foy, P. Dragic, and J. G. Eden, “Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy,” Opt. Express20, 14494–14507 (2012).
    [CrossRef] [PubMed]
  12. J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” Conf. Digest of CLEO p. CTuq5 (2005).
  13. F. Mady, M. Benabdesselam, and W. Blanc, “Termoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers,” Opt. Lett.35, 3542–3543 (2010).
    [CrossRef]
  14. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express2, 1260–1268 (2008).
    [CrossRef]
  15. S. Rydberg and M. Engholm, “Charge transfer processes and UV induced absorption in Yb:YAG single crystal laser materials,” To be submitted (2013).
  16. J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non. Cryst. Solids352, 2399–2403 (2006).
    [CrossRef]
  17. J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. of SPIE7598, 75980B (2010).
    [CrossRef]
  18. A. Guzman Chávez, A. Kir’yanov, Y. Barmenkov, and N. Il’ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett.4, 734–739 (2007).
    [CrossRef]
  19. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. B. Doua, and F. Sallin, “Photodarkening and photobleaching of an ytterbium-doped silica double clad LMA fiber,” Opt. Express15, 1606–1611 (2007).
    [CrossRef] [PubMed]
  20. R. Peretti, A.-M. Jurdyc, B. Jacquier, C. Gonnet, A. Pastouret, E. Burov, and O. Cavani, “How do traces of thulium explain photodarkening in Yb doped fibers?,” Opt. Express18, 20455–20460 (2010).
    [CrossRef] [PubMed]
  21. R. Peretti, C. Gonnet, and A.-M. Jurdyc, “A new vision of photodarkening in Yb3+-doped fibers,” J. of Appl. Phys. 112 093511 (2012).
  22. S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express 19, 14473–14478 (2011).
    [CrossRef] [PubMed]
  23. M. Engholm and S. Rydberg, “Strong excited state absorption (ESA) in Yb-doped fiber lasers,” Proc. of SPIE8601, (2013).

2013

M. Engholm and S. Rydberg, “Strong excited state absorption (ESA) in Yb-doped fiber lasers,” Proc. of SPIE8601, (2013).

2012

P. D. Dragic, Y.-S. Liu, T. C. Galvin, and J. G. Eden, “Ultraviolet absorption and excitation spectroscopy of rare-earth-doped glass fibers derived from glassy and crystalline preforms,” Proc. of SPIE8237 (2012).
[CrossRef]

R. Peretti, C. Gonnet, and A.-M. Jurdyc, “A new vision of photodarkening in Yb3+-doped fibers,” J. of Appl. Phys. 112 093511 (2012).

Y.-S. Liu, T. C. Galvin, T. Hawkins, J. Ballato, L. Dong, P. Foy, P. Dragic, and J. G. Eden, “Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy,” Opt. Express20, 14494–14507 (2012).
[CrossRef] [PubMed]

2011

S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express 19, 14473–14478 (2011).
[CrossRef] [PubMed]

T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. of SPIE7914, 79140K (2011).
[CrossRef]

2010

F. Mady, M. Benabdesselam, and W. Blanc, “Termoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers,” Opt. Lett.35, 3542–3543 (2010).
[CrossRef]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. of SPIE7598, 75980B (2010).
[CrossRef]

R. Peretti, A.-M. Jurdyc, B. Jacquier, C. Gonnet, A. Pastouret, E. Burov, and O. Cavani, “How do traces of thulium explain photodarkening in Yb doped fibers?,” Opt. Express18, 20455–20460 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2006

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non. Cryst. Solids352, 2399–2403 (2006).
[CrossRef]

Åberg, D.

Andrejco, M.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” Conf. Digest of CLEO p. CTuq5 (2005).

Arai, T.

T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. of SPIE7914, 79140K (2011).
[CrossRef]

Ballato, J.

Barmenkov, Y.

A. Guzman Chávez, A. Kir’yanov, Y. Barmenkov, and N. Il’ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett.4, 734–739 (2007).
[CrossRef]

Basu, C.

Benabdesselam, M.

F. Mady, M. Benabdesselam, and W. Blanc, “Termoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers,” Opt. Lett.35, 3542–3543 (2010).
[CrossRef]

Blanc, W.

F. Mady, M. Benabdesselam, and W. Blanc, “Termoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers,” Opt. Lett.35, 3542–3543 (2010).
[CrossRef]

Boullet, J.

Boyland, A.

Bufetov, I.

A. Shubin, M. Yashkov, M. Melkumov, S. Smirnov, I. Bufetov, and E. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” CLEO Europe Conference pp. CJ3–1–THU (2007).

Burov, E.

Cardinal, T.

Carlson, C. G.

Cavani, O.

Croteau, A.

Dianov, E.

A. Shubin, M. Yashkov, M. Melkumov, S. Smirnov, I. Bufetov, and E. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” CLEO Europe Conference pp. CJ3–1–THU (2007).

DiGiovanni, D.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” Conf. Digest of CLEO p. CTuq5 (2005).

Dong, L.

Doua, R. B.

Dragic, P.

Dragic, P. D.

P. D. Dragic, Y.-S. Liu, T. C. Galvin, and J. G. Eden, “Ultraviolet absorption and excitation spectroscopy of rare-earth-doped glass fibers derived from glassy and crystalline preforms,” Proc. of SPIE8237 (2012).
[CrossRef]

P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express16, 4688–4697 (2008).
[CrossRef] [PubMed]

Eden, J. G.

Engholm, M.

M. Engholm and S. Rydberg, “Strong excited state absorption (ESA) in Yb-doped fiber lasers,” Proc. of SPIE8601, (2013).

M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in Yb-doped fiber lasers by Cerium co-doping,” Opt. Lett.34, 1285–1287 (2009).
[CrossRef] [PubMed]

M. Engholm and L. Norin, “Comment on “photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett.33, 1216–1216 (2008).
[CrossRef] [PubMed]

M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express2, 1260–1268 (2008).
[CrossRef]

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al based fiber lasers,” Proc. of SPIE6873, 68731E–1 (2008).

M. Engholm, L. Norin, and D. Åberg, “Strong UV-absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV-excitation,” Opt. Lett.32, 3352–3354 (2007).
[CrossRef] [PubMed]

S. Rydberg and M. Engholm, “Charge transfer processes and UV induced absorption in Yb:YAG single crystal laser materials,” To be submitted (2013).

Ermeneux, S.

Foy, P.

Fujimaki, M.

T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. of SPIE7914, 79140K (2011).
[CrossRef]

Galvin, T. C.

Gonnet, C.

Grimm, S.

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non. Cryst. Solids352, 2399–2403 (2006).
[CrossRef]

Guillen, F.

Guzman Chávez, A.

A. Guzman Chávez, A. Kir’yanov, Y. Barmenkov, and N. Il’ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett.4, 734–739 (2007).
[CrossRef]

Hawkins, T.

Ichii, K.

T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. of SPIE7914, 79140K (2011).
[CrossRef]

Il’ichev, N.

A. Guzman Chávez, A. Kir’yanov, Y. Barmenkov, and N. Il’ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett.4, 734–739 (2007).
[CrossRef]

Jacquier, B.

Jasapara, J.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” Conf. Digest of CLEO p. CTuq5 (2005).

Jelger, P.

Jetschke, S.

Jurdyc, A.-M.

Kir’yanov, A.

A. Guzman Chávez, A. Kir’yanov, Y. Barmenkov, and N. Il’ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett.4, 734–739 (2007).
[CrossRef]

Kirchhof, J.

S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express 19, 14473–14478 (2011).
[CrossRef] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. of SPIE7598, 75980B (2010).
[CrossRef]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16, 15540–15545 (2008).
[CrossRef] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non. Cryst. Solids352, 2399–2403 (2006).
[CrossRef]

Laurell, F.

Leich, M.

Liu, Y.-S.

Mady, F.

F. Mady, M. Benabdesselam, and W. Blanc, “Termoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers,” Opt. Lett.35, 3542–3543 (2010).
[CrossRef]

Manek-Hönninger, I.

Melkumov, M.

A. Shubin, M. Yashkov, M. Melkumov, S. Smirnov, I. Bufetov, and E. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” CLEO Europe Conference pp. CJ3–1–THU (2007).

Nilsson, J.

Norin, L.

Pastouret, A.

Payne, D.

Peretti, R.

Podgorski, M.

Reichel, V.

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. of SPIE7598, 75980B (2010).
[CrossRef]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non. Cryst. Solids352, 2399–2403 (2006).
[CrossRef]

Rydberg, S.

M. Engholm and S. Rydberg, “Strong excited state absorption (ESA) in Yb-doped fiber lasers,” Proc. of SPIE8601, (2013).

S. Rydberg and M. Engholm, “Charge transfer processes and UV induced absorption in Yb:YAG single crystal laser materials,” To be submitted (2013).

Sahu, J.

Sallin, F.

Scheffel, A.

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. of SPIE7598, 75980B (2010).
[CrossRef]

Schwuchow, A.

S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express 19, 14473–14478 (2011).
[CrossRef] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. of SPIE7598, 75980B (2010).
[CrossRef]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16, 15540–15545 (2008).
[CrossRef] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non. Cryst. Solids352, 2399–2403 (2006).
[CrossRef]

Shubin, A.

A. Shubin, M. Yashkov, M. Melkumov, S. Smirnov, I. Bufetov, and E. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” CLEO Europe Conference pp. CJ3–1–THU (2007).

Smirnov, S.

A. Shubin, M. Yashkov, M. Melkumov, S. Smirnov, I. Bufetov, and E. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” CLEO Europe Conference pp. CJ3–1–THU (2007).

Sones, C.

Tanigawa, S.

T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. of SPIE7914, 79140K (2011).
[CrossRef]

Unger, S.

S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express 19, 14473–14478 (2011).
[CrossRef] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. of SPIE7598, 75980B (2010).
[CrossRef]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16, 15540–15545 (2008).
[CrossRef] [PubMed]

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non. Cryst. Solids352, 2399–2403 (2006).
[CrossRef]

Windeler, R.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” Conf. Digest of CLEO p. CTuq5 (2005).

Yashkov, M.

A. Shubin, M. Yashkov, M. Melkumov, S. Smirnov, I. Bufetov, and E. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” CLEO Europe Conference pp. CJ3–1–THU (2007).

Yoo, S.

CLEO Europe Conference

A. Shubin, M. Yashkov, M. Melkumov, S. Smirnov, I. Bufetov, and E. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” CLEO Europe Conference pp. CJ3–1–THU (2007).

J. Non. Cryst. Solids

J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, and V. Reichel, “Materials for high-power fiber lasers,” J. Non. Cryst. Solids352, 2399–2403 (2006).
[CrossRef]

J. of Appl. Phys.

R. Peretti, C. Gonnet, and A.-M. Jurdyc, “A new vision of photodarkening in Yb3+-doped fibers,” J. of Appl. Phys. 112 093511 (2012).

Laser Phys. Lett.

A. Guzman Chávez, A. Kir’yanov, Y. Barmenkov, and N. Il’ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation,” Laser Phys. Lett.4, 734–739 (2007).
[CrossRef]

Opt. Express

I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. B. Doua, and F. Sallin, “Photodarkening and photobleaching of an ytterbium-doped silica double clad LMA fiber,” Opt. Express15, 1606–1611 (2007).
[CrossRef] [PubMed]

P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express16, 4688–4697 (2008).
[CrossRef] [PubMed]

M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express2, 1260–1268 (2008).
[CrossRef]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16, 15540–15545 (2008).
[CrossRef] [PubMed]

R. Peretti, A.-M. Jurdyc, B. Jacquier, C. Gonnet, A. Pastouret, E. Burov, and O. Cavani, “How do traces of thulium explain photodarkening in Yb doped fibers?,” Opt. Express18, 20455–20460 (2010).
[CrossRef] [PubMed]

S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express 19, 14473–14478 (2011).
[CrossRef] [PubMed]

Y.-S. Liu, T. C. Galvin, T. Hawkins, J. Ballato, L. Dong, P. Foy, P. Dragic, and J. G. Eden, “Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy,” Opt. Express20, 14494–14507 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Proc. of SPIE

P. D. Dragic, Y.-S. Liu, T. C. Galvin, and J. G. Eden, “Ultraviolet absorption and excitation spectroscopy of rare-earth-doped glass fibers derived from glassy and crystalline preforms,” Proc. of SPIE8237 (2012).
[CrossRef]

M. Engholm and S. Rydberg, “Strong excited state absorption (ESA) in Yb-doped fiber lasers,” Proc. of SPIE8601, (2013).

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al based fiber lasers,” Proc. of SPIE6873, 68731E–1 (2008).

T. Arai, K. Ichii, S. Tanigawa, and M. Fujimaki, “Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses,” Proc. of SPIE7914, 79140K (2011).
[CrossRef]

J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, and A. Scheffel, “The influence of Yb2+ ions on optical properties and power stability of ytterbium-doped laser fibers,” Proc. of SPIE7598, 75980B (2010).
[CrossRef]

Other

S. Rydberg and M. Engholm, “Charge transfer processes and UV induced absorption in Yb:YAG single crystal laser materials,” To be submitted (2013).

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” Conf. Digest of CLEO p. CTuq5 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

CT absorption band of the 0.2 at% Yb/Al doped silica glass preform (blue solid line). The black dashed lines show a Gaussian deconvolution of CT absorption band and the red dashed-dotted line shows the absorption spectrum of a non-Yb-doped reference preform.

Fig. 2
Fig. 2

Normalized luminescence from the reduced Yb/Al preform (blue solid line) and the oxidized Yb/Al preform irradiated at 210 nm for 6 hours (red dashed line). The excitation wavelength is 300 nm for both samples. The center wavelength as a function of irradiation time is shown in the inset.

Fig. 3
Fig. 3

Integrated intensity in the 400 – 800 nm range as a function of time for the Yb2+ luminescence. The integrated intensity for the Yb3+ emission near 1 μm is displayed in the inset.

Fig. 4
Fig. 4

Excitation spectra for the reduced Yb/Al preform (blue solid line) and UV irradiated Yb/Al preform (red dashed line) monitored at 530 nm. The characteristic Yb2+ absorption spectrum is also shown for comparison (black dash-dotted line).

Fig. 5
Fig. 5

Normalized luminescence from the NIR diode pumped photodarkened Yb/Al fiber excited by a 405 nm SM fiber coupled laser (black dash-dotted line) and the pristine Yb/Al fiber (blue dashed-dotted line). The reduced Yb/Al preform excited by 300 nm is shown for comparison (red solid line). The inset shows the decrease in intensity as a function of time.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Y b 3 + + h ν C T Y b 2 + + h temp / bound

Metrics