Abstract

We report a microfluidic fiber-optic refractive index (RI) sensor based on an in-line Fabry-Perot (FP) interferometer, which is formed by a silica tube sandwiched by two microstructured fibers (MFs). The sensor reported here can be fabricated at low cost, possess a robust structure, and has microfluidic capability. The micro-sized holes in the MFs naturally function as microfluidic channels through which liquid samples can be efficiently and conveniently delivered into and out of the FP cavity by a pressure/vacuum pump system for high-performance RI measurement. Due to the microfluidic capability enabled by the MFs, only sub microliter sample is required. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good measurement repeatability, and low temperature cross-sensitivity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
    [CrossRef]
  2. I. Del Villar, I. R. Matias, and F. J. Arregui, “Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials,” Opt. Lett.30(18), 2363–2365 (2005).
    [CrossRef] [PubMed]
  3. M. Han, F. W. Guo, and Y. F. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett.35(3), 399–401 (2010).
    [CrossRef] [PubMed]
  4. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express15(18), 11413–11426 (2007).
    [CrossRef] [PubMed]
  5. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express15(6), 3169–3176 (2007).
    [CrossRef] [PubMed]
  6. T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008).
    [CrossRef] [PubMed]
  7. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express15(21), 14123–14128 (2007).
    [CrossRef] [PubMed]
  8. G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensor. Actuat. A-Phys118, 177–182 (2005).
  9. B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
    [CrossRef]
  10. J. J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, and M. Han, “Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure,” Opt. Lett.37(22), 4672–4674 (2012).
    [CrossRef] [PubMed]
  11. R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
    [CrossRef]
  12. http://www.refractometer.pl/refraction-datasheet-ethanol .
  13. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt.46(18), 3811–3820 (2007).
    [CrossRef] [PubMed]

2012 (1)

2010 (1)

2008 (2)

T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008).
[CrossRef] [PubMed]

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

2007 (4)

2005 (3)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials,” Opt. Lett.30(18), 2363–2365 (2005).
[CrossRef] [PubMed]

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensor. Actuat. A-Phys118, 177–182 (2005).

2003 (1)

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Abe, I.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Adnet, A.

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensor. Actuat. A-Phys118, 177–182 (2005).

Arregui, F. J.

Borel, P. I.

Cheng, G. H.

Daimon, M.

Del Villar, I.

Deng, M.

Duan, D. W.

Duan, Y. H.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Fabris, J. L.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Fassi Fehri, M.

Fink, T.

Frandsen, L. H.

Gauvreau, B.

Grover, C. P.

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensor. Actuat. A-Phys118, 177–182 (2005).

Guo, F. W.

Han, M.

Han, Y. K.

Hassani, A.

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Huang, Z. Y.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Huo, W.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Kabashin, A.

Kalinowski, H. J.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Kamikawachi, R. C.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Kjems, J.

Kristensen, M.

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Li, H.

Li, Y. J.

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Lu, Y. F.

Masumura, A.

Matias, I. R.

May, R. G.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Muller, M.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Paterno, A. S.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Peng, W.

J. J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, and M. Han, “Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure,” Opt. Lett.37(22), 4672–4674 (2012).
[CrossRef] [PubMed]

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Pickrell, G. R.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Pinto, J. L.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Qi, B.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Rao, Y. J.

Skivesen, N.

Skorobogatiy, M. A.

Sun, F. G.

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensor. Actuat. A-Phys118, 177–182 (2005).

Têtu, A.

Tian, J. J.

Tsai, H. L.

Wang, A.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Wei, T.

Xiao, G. Z.

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensor. Actuat. A-Phys118, 177–182 (2005).

Xiao, H.

T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008).
[CrossRef] [PubMed]

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Xu, J. C.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Yang, X. C.

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Zhang, P.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Zhang, Q.

Zhang, Z. Y.

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensor. Actuat. A-Phys118, 177–182 (2005).

Zhu, T.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005).
[CrossRef]

Opt. Commun. (1)

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Opt. Eng. (1)

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng.42(11), 3165–3171 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Sensor. Actuat. A-Phys (1)

G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensor. Actuat. A-Phys118, 177–182 (2005).

Other (1)

http://www.refractometer.pl/refraction-datasheet-ethanol .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Structure of the fiber-optic RI sensor; (b) Cross-sectional view of the MF used for the sensor fabrication; (c) Picture of the FPI region of the senor; (d) Interferometric fringes of a fabricated sensor in air.

Fig. 2
Fig. 2

Schematic of the experimental setup for RI measurement of liquid.

Fig. 3
Fig. 3

Reflection spectra when the sensor FP cavity was filled with air, ID water, and ethanol.

Fig. 4
Fig. 4

(a) Reflection spectra of the RI sensor when the FP cavity was filled with ethanol solutions of different concentrations; (b) Calculated RI change as a function of the ethanol concentration and comparison with results in [12].

Fig. 5
Fig. 5

Sensor repeatability test. (a) Reflection spectra of the sensor for several measurements of DI waters; (b) Calculated RI changes; inset: enlarged view of the spectra around a fringe valley.

Fig. 6
Fig. 6

Test of the sensor’s temperature cross-sensitivity. (a) Reflection spectra of the sensor at different temperatures in air; (b) Calculated equivalent RI changes; inset: enlarged view of the spectra around a fringe valley.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ln= 1 2 ( λ v1 λ v2 λ v2 λ v1 ),
Δn= Δλ λ n,

Metrics