Abstract

A standard multimode optical fiber can be used as a general purpose spectrometer after calibrating the wavelength dependent speckle patterns produced by interference between the guided modes of the fiber. A transmission matrix was used to store the calibration data and a robust algorithm was developed to reconstruct an arbitrary input spectrum in the presence of experimental noise. We demonstrate that a 20 meter long fiber can resolve two laser lines separated by only 8 pm. At the other extreme, we show that a 2 centimeter long fiber can measure a broadband continuous spectrum generated from a supercontinuum source. We investigate the effect of the fiber geometry on the spectral resolution and bandwidth, and also discuss the additional limitation on the bandwidth imposed by speckle contrast reduction when measuring dense spectra. Finally, we demonstrate a method to reduce the spectrum reconstruction error and increase the bandwidth by separately imaging the speckle patterns of orthogonal polarizations. The multimode fiber spectrometer is compact, lightweight, low cost, and provides high resolution with low loss.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Xu, Z. Wang, M. E. Sullivan, D. J. Brady, S. H. Foulger, and A. Adibi, “Multimodal multiplex spectroscopy using photonic crystals,” Opt. Express11(18), 2126–2133 (2003).
    [CrossRef] [PubMed]
  2. T. W. Kohlgraf-Owens and A. Dogariu, “Transmission matrices of random media: means for spectral polarimetric measurements,” Opt. Lett.35(13), 2236–2238 (2010).
    [CrossRef] [PubMed]
  3. Q. Hang, B. Ung, I. Syed, N. Guo, and M. Skorobogatiy, “Photonic bandgap fiber bundle spectrometer,” Appl. Opt.49(25), 4791–4800 (2010).
    [CrossRef] [PubMed]
  4. B. Redding and H. Cao, “Using a multimode fiber as a high-resolution, low-loss spectrometer,” Opt. Lett.37(16), 3384–3386 (2012).
    [CrossRef] [PubMed]
  5. B. Crosignani, B. Diano, and P. D. Porto, “Speckle-pattern visibility of light transmitted through a multimode optical fiber,” J. Opt. Soc. Am.66(11), 1312–1313 (1976).
    [CrossRef]
  6. M. Imai and Y. Ohtsuka, “Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber,” Opt. Commun.33(1), 4–8 (1980).
    [CrossRef]
  7. E. G. Rawson, J. W. Goodman, and R. E. Norton, “Frequency dependence of modal noise in multimode optical fibers,” J. Opt. Soc. Am.70(8), 968–976 (1980).
    [CrossRef]
  8. P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern,” J. Mod. Opt.41(5), 1001–1014 (1994).
    [CrossRef]
  9. W. Freude, G. Fritzsche, G. Grau, and L. Shan-da, “Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides,” J. Lightwave Technol.4(1), 64–72 (1986).
    [CrossRef]
  10. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).
  11. V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 056223 (2002).
    [CrossRef] [PubMed]
  12. J. W. Goodman, Speckle Phenomena in Optics (Ben Roberts & Co., 2007).
  13. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express20(10), 10583–10590 (2012).
    [CrossRef] [PubMed]
  14. P. F. Steeger, T. Asakura, and A. F. Fercher, “Polarization preservation in circular multimode optical fibers and its measurement by a speckle method,” J. Lightwave Technol.2(4), 435–441 (1984).
    [CrossRef]
  15. T. Okamoto and I. Yamaguchi, “Multimode fiber-optic Mach-Zehnder interferometer and its use in temperature measurement,” Appl. Opt.27(15), 3085–3087 (1988).
    [CrossRef] [PubMed]
  16. K. Pan, C. M. Uang, F. Cheng, and F. T. Yu, “Multimode fiber sensing by using mean-absolute speckle-intensity variation,” Appl. Opt.33(10), 2095–2098 (1994).
    [CrossRef] [PubMed]
  17. O. A. Oraby, J. W. Spencer, and G. R. Jones, “Monitoring changes in the speckle field from an optical fibre exposed to low frequency acoustical vibrations,” J. Mod. Opt.56(1), 55–84 (2009).
    [CrossRef]
  18. E. Fujiwara, Y. T. Wu, and C. K. Suzuki, “Vibration-based specklegram fiber sensor for measurement of properties of liquids,” Opt. Lasers Eng.50(12), 1726–1730 (2012).
    [CrossRef]
  19. F. T. S. Yu, J. Zhang, K. Pan, D. Zhao, and P. B. Ruffin, “Fiber vibration sensor that uses the speckle contrast ratio,” Opt. Eng.34(1), 1–236 (1995).
    [CrossRef]
  20. W. Ha, S. Lee, Y. Jung, J. K. Kim, and K. Oh, “Acousto-optic control of speckle contrast in multimode fibers with a cylindrical piezoelectric transducer oscillating in the radial direction,” Opt. Express17(20), 17536–17546 (2009).
    [CrossRef] [PubMed]
  21. S. Wu, S. Yin, and F. T. S. Yu, “Sensing with fiber specklegrams,” Appl. Opt.30(31), 4468–4470 (1991).
    [CrossRef] [PubMed]
  22. H. S. Choi, H. F. Taylor, and C. E. Lee, “High-performance fiber-optic temperature sensor using low-coherence interferometry,” Opt. Lett.22(23), 1814–1816 (1997).
    [CrossRef] [PubMed]

2012 (3)

2010 (2)

2009 (2)

O. A. Oraby, J. W. Spencer, and G. R. Jones, “Monitoring changes in the speckle field from an optical fibre exposed to low frequency acoustical vibrations,” J. Mod. Opt.56(1), 55–84 (2009).
[CrossRef]

W. Ha, S. Lee, Y. Jung, J. K. Kim, and K. Oh, “Acousto-optic control of speckle contrast in multimode fibers with a cylindrical piezoelectric transducer oscillating in the radial direction,” Opt. Express17(20), 17536–17546 (2009).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 056223 (2002).
[CrossRef] [PubMed]

1997 (1)

1995 (1)

F. T. S. Yu, J. Zhang, K. Pan, D. Zhao, and P. B. Ruffin, “Fiber vibration sensor that uses the speckle contrast ratio,” Opt. Eng.34(1), 1–236 (1995).
[CrossRef]

1994 (2)

P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern,” J. Mod. Opt.41(5), 1001–1014 (1994).
[CrossRef]

K. Pan, C. M. Uang, F. Cheng, and F. T. Yu, “Multimode fiber sensing by using mean-absolute speckle-intensity variation,” Appl. Opt.33(10), 2095–2098 (1994).
[CrossRef] [PubMed]

1991 (1)

1988 (1)

1986 (1)

W. Freude, G. Fritzsche, G. Grau, and L. Shan-da, “Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides,” J. Lightwave Technol.4(1), 64–72 (1986).
[CrossRef]

1984 (1)

P. F. Steeger, T. Asakura, and A. F. Fercher, “Polarization preservation in circular multimode optical fibers and its measurement by a speckle method,” J. Lightwave Technol.2(4), 435–441 (1984).
[CrossRef]

1980 (2)

M. Imai and Y. Ohtsuka, “Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber,” Opt. Commun.33(1), 4–8 (1980).
[CrossRef]

E. G. Rawson, J. W. Goodman, and R. E. Norton, “Frequency dependence of modal noise in multimode optical fibers,” J. Opt. Soc. Am.70(8), 968–976 (1980).
[CrossRef]

1976 (1)

Adibi, A.

Asakura, T.

P. F. Steeger, T. Asakura, and A. F. Fercher, “Polarization preservation in circular multimode optical fibers and its measurement by a speckle method,” J. Lightwave Technol.2(4), 435–441 (1984).
[CrossRef]

Brady, D. J.

Cao, H.

Cheng, F.

Choi, H. S.

Crosignani, B.

Diano, B.

Dogariu, A.

Doya, V.

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 056223 (2002).
[CrossRef] [PubMed]

Farahi, S.

Fercher, A. F.

P. F. Steeger, T. Asakura, and A. F. Fercher, “Polarization preservation in circular multimode optical fibers and its measurement by a speckle method,” J. Lightwave Technol.2(4), 435–441 (1984).
[CrossRef]

Foulger, S. H.

Freude, W.

W. Freude, G. Fritzsche, G. Grau, and L. Shan-da, “Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides,” J. Lightwave Technol.4(1), 64–72 (1986).
[CrossRef]

Fritzsche, G.

W. Freude, G. Fritzsche, G. Grau, and L. Shan-da, “Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides,” J. Lightwave Technol.4(1), 64–72 (1986).
[CrossRef]

Fujiwara, E.

E. Fujiwara, Y. T. Wu, and C. K. Suzuki, “Vibration-based specklegram fiber sensor for measurement of properties of liquids,” Opt. Lasers Eng.50(12), 1726–1730 (2012).
[CrossRef]

Goodman, J. W.

Grau, G.

W. Freude, G. Fritzsche, G. Grau, and L. Shan-da, “Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides,” J. Lightwave Technol.4(1), 64–72 (1986).
[CrossRef]

Guo, N.

Ha, W.

Hang, Q.

Hlubina, P.

P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern,” J. Mod. Opt.41(5), 1001–1014 (1994).
[CrossRef]

Imai, M.

M. Imai and Y. Ohtsuka, “Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber,” Opt. Commun.33(1), 4–8 (1980).
[CrossRef]

Jones, G. R.

O. A. Oraby, J. W. Spencer, and G. R. Jones, “Monitoring changes in the speckle field from an optical fibre exposed to low frequency acoustical vibrations,” J. Mod. Opt.56(1), 55–84 (2009).
[CrossRef]

Jung, Y.

Kim, J. K.

Kohlgraf-Owens, T. W.

Lee, C. E.

Lee, S.

Legrand, O.

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 056223 (2002).
[CrossRef] [PubMed]

Miniatura, C.

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 056223 (2002).
[CrossRef] [PubMed]

Mortessagne, F.

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 056223 (2002).
[CrossRef] [PubMed]

Moser, C.

Norton, R. E.

Oh, K.

Ohtsuka, Y.

M. Imai and Y. Ohtsuka, “Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber,” Opt. Commun.33(1), 4–8 (1980).
[CrossRef]

Okamoto, T.

Oraby, O. A.

O. A. Oraby, J. W. Spencer, and G. R. Jones, “Monitoring changes in the speckle field from an optical fibre exposed to low frequency acoustical vibrations,” J. Mod. Opt.56(1), 55–84 (2009).
[CrossRef]

Pan, K.

F. T. S. Yu, J. Zhang, K. Pan, D. Zhao, and P. B. Ruffin, “Fiber vibration sensor that uses the speckle contrast ratio,” Opt. Eng.34(1), 1–236 (1995).
[CrossRef]

K. Pan, C. M. Uang, F. Cheng, and F. T. Yu, “Multimode fiber sensing by using mean-absolute speckle-intensity variation,” Appl. Opt.33(10), 2095–2098 (1994).
[CrossRef] [PubMed]

Papadopoulos, I. N.

Porto, P. D.

Psaltis, D.

Rawson, E. G.

Redding, B.

Ruffin, P. B.

F. T. S. Yu, J. Zhang, K. Pan, D. Zhao, and P. B. Ruffin, “Fiber vibration sensor that uses the speckle contrast ratio,” Opt. Eng.34(1), 1–236 (1995).
[CrossRef]

Shan-da, L.

W. Freude, G. Fritzsche, G. Grau, and L. Shan-da, “Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides,” J. Lightwave Technol.4(1), 64–72 (1986).
[CrossRef]

Skorobogatiy, M.

Spencer, J. W.

O. A. Oraby, J. W. Spencer, and G. R. Jones, “Monitoring changes in the speckle field from an optical fibre exposed to low frequency acoustical vibrations,” J. Mod. Opt.56(1), 55–84 (2009).
[CrossRef]

Steeger, P. F.

P. F. Steeger, T. Asakura, and A. F. Fercher, “Polarization preservation in circular multimode optical fibers and its measurement by a speckle method,” J. Lightwave Technol.2(4), 435–441 (1984).
[CrossRef]

Sullivan, M. E.

Suzuki, C. K.

E. Fujiwara, Y. T. Wu, and C. K. Suzuki, “Vibration-based specklegram fiber sensor for measurement of properties of liquids,” Opt. Lasers Eng.50(12), 1726–1730 (2012).
[CrossRef]

Syed, I.

Taylor, H. F.

Uang, C. M.

Ung, B.

Wang, Z.

Wu, S.

Wu, Y. T.

E. Fujiwara, Y. T. Wu, and C. K. Suzuki, “Vibration-based specklegram fiber sensor for measurement of properties of liquids,” Opt. Lasers Eng.50(12), 1726–1730 (2012).
[CrossRef]

Xu, Z.

Yamaguchi, I.

Yin, S.

Yu, F. T.

Yu, F. T. S.

F. T. S. Yu, J. Zhang, K. Pan, D. Zhao, and P. B. Ruffin, “Fiber vibration sensor that uses the speckle contrast ratio,” Opt. Eng.34(1), 1–236 (1995).
[CrossRef]

S. Wu, S. Yin, and F. T. S. Yu, “Sensing with fiber specklegrams,” Appl. Opt.30(31), 4468–4470 (1991).
[CrossRef] [PubMed]

Zhang, J.

F. T. S. Yu, J. Zhang, K. Pan, D. Zhao, and P. B. Ruffin, “Fiber vibration sensor that uses the speckle contrast ratio,” Opt. Eng.34(1), 1–236 (1995).
[CrossRef]

Zhao, D.

F. T. S. Yu, J. Zhang, K. Pan, D. Zhao, and P. B. Ruffin, “Fiber vibration sensor that uses the speckle contrast ratio,” Opt. Eng.34(1), 1–236 (1995).
[CrossRef]

Appl. Opt. (4)

J. Lightwave Technol. (2)

W. Freude, G. Fritzsche, G. Grau, and L. Shan-da, “Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides,” J. Lightwave Technol.4(1), 64–72 (1986).
[CrossRef]

P. F. Steeger, T. Asakura, and A. F. Fercher, “Polarization preservation in circular multimode optical fibers and its measurement by a speckle method,” J. Lightwave Technol.2(4), 435–441 (1984).
[CrossRef]

J. Mod. Opt. (2)

O. A. Oraby, J. W. Spencer, and G. R. Jones, “Monitoring changes in the speckle field from an optical fibre exposed to low frequency acoustical vibrations,” J. Mod. Opt.56(1), 55–84 (2009).
[CrossRef]

P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern,” J. Mod. Opt.41(5), 1001–1014 (1994).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Commun. (1)

M. Imai and Y. Ohtsuka, “Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber,” Opt. Commun.33(1), 4–8 (1980).
[CrossRef]

Opt. Eng. (1)

F. T. S. Yu, J. Zhang, K. Pan, D. Zhao, and P. B. Ruffin, “Fiber vibration sensor that uses the speckle contrast ratio,” Opt. Eng.34(1), 1–236 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (1)

E. Fujiwara, Y. T. Wu, and C. K. Suzuki, “Vibration-based specklegram fiber sensor for measurement of properties of liquids,” Opt. Lasers Eng.50(12), 1726–1730 (2012).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(5), 056223 (2002).
[CrossRef] [PubMed]

Other (2)

J. W. Goodman, Speckle Phenomena in Optics (Ben Roberts & Co., 2007).

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).

Supplementary Material (1)

» Media 1: AVI (34007 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics