Abstract

The spectroscopic properties of Eu3+ in biocompatible glass and glass-ceramic eutectic rods of composition 0.8CaSiO3-0.2Ca3(PO4)2 doped with 0.5 wt% of Eu2O3 are investigated to explore their potential applications as optical probes. The samples were obtained by the laser floating zone technique. Depending on the growth rate, they exhibit three (two crystalline and one amorphous) or two (one crystalline and one amorphous) phases. The crystalline phases correspond to Ca2SiO4 and apatite-like structures. At high growth rates the system presents an amorphous arrangement which gives a glass phase. The results of time-resolved fluorescence line narrowing spectroscopy obtained under excitation within the inhomogeneous broadened 7F05D0 absorption band allow to isolate the emission from Eu3+ ions in the crystalline and amorphous environments and to accurately correlate the spectroscopic properties with the microstructure of these eutectics.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. L. Hench, R. J. Splinter, T. K. Greenle, and W. C. Allen, “Bonding mechanisms at the interface of ceramic prosthetic materials,” J. Biomed. Mater. Res.2, 117–141 (1971).
  2. L. L. Hench, “Bioceramics: From Concept to Clinic,” J. Am. Ceram. Soc.74(7), 1487–1510 (1991).
    [CrossRef]
  3. K. De Groot and R. Le Geros, Significance of Porosity and Physical Chemistry of Calcium Phosphate Ceramics, P. Ducheyne, ed. (Ann. N.Y. Acad. Sci.,1988).
  4. P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc.78(6), 1653–1656 (1995).
    [CrossRef]
  5. P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials18(19), 1285–1291 (1997).
    [CrossRef] [PubMed]
  6. M. Magallanes-Perdomo, A. H. De Aza, I. Sobrados, J. Sanz, and P. Pena, “Structure and properties of bioactive eutectic glasses based on the Ca3(PO4)2-CaSiO3-CaMg(SiO3)2 system,” Acta Biomater.8(2), 820–829 (2012).
    [CrossRef] [PubMed]
  7. J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci.51(6), 711–809 (2006).
    [CrossRef]
  8. R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B56(17), 10907–10915 (1997).
    [CrossRef]
  9. V. M. Orera, J. I. Peña, R. I. Merino, J. A. Lazaro, J. A. Valles, and M. A. Rebolledo, “Prospects of new planar optical waveguides based on eutectic microcomposites of insulating crystals: The ZrO2(c)-CaZrO3 erbium doped system,” Appl. Phys. Lett.71(19), 2746–2748 (1997).
    [CrossRef]
  10. R. G. Carrodeguas and S. De Aza, “α-Tricalcium phosphate: Synthesis, properties and biomedical applications,” Acta Biomater.7(10), 3536–3546 (2011).
    [CrossRef] [PubMed]
  11. P. N. de Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater.46(7), 2541–2549 (1998).
    [CrossRef]
  12. M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009).
    [CrossRef] [PubMed]
  13. J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids298(1), 23–31 (2002).
    [CrossRef]
  14. R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express17(6), 4382–4387 (2009).
    [CrossRef] [PubMed]
  15. R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater.31(9), 1319–1322 (2009).
    [CrossRef]
  16. D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express20(10), 10701–10711 (2012).
    [CrossRef] [PubMed]
  17. R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence-line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphates glass,” Phys. Rev. B54(17), 12076–12086 (1996).
    [CrossRef]
  18. C. Cascales, J. Fernández, and R. Balda, “Investigation of site-selective symmetries of Eu3+ ions in KPb2Cl5 by using optical spectroscopy,” Opt. Express13(6), 2141–2152 (2005).
    [CrossRef] [PubMed]
  19. C. Cascales, R. Balda, V. Jubera, J. P. Chaminade, and J. Fernández, “Optical spectroscopic study of Eu3+ crystal field sites in Na3La9O3(BO3)8 crystal,” Opt. Express16(4), 2653–2662 (2008).
    [CrossRef] [PubMed]
  20. H. Nagabhushana, B. M. Nagabhushana, M. Madesh Kumar, K. V. R. Chikkahanumantharayappa, K. V. R. Murthy, C. Shivakumara, and R. P. S. Chakradhar, “Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor,” Spectrochimica Acta Part A78(1), 64–69 (2011).
    [CrossRef]
  21. X. Kang, S. Huang, P. Yang, P. Ma, D. Yang, and J. Lin, “Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route,” Dalton Trans.40(9), 1873–1879 (2011).
    [CrossRef] [PubMed]
  22. S. J. Dhoble, N. S. Dhoble, and R. B. Pode, “Preparation and characterization of Eu3+ activated CaSiO3, (CaA)SiO3 [A = Ba or Sr] phosphors,” Bull. Mater. Sci.26(4), 377–382 (2003).
    [CrossRef]
  23. Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011).
    [CrossRef] [PubMed]
  24. Q. Yu, Y. Liu, S. Wu, X. Lü, X. Huang, and X. Li, “Luminescence properties of Ca2SiO4:Eu3+ red phosphor for trichromatic white light emitting diodes,” J. Rare Earths26(6), 783–786 (2008).
    [CrossRef]
  25. A. Doat, M. Fanjul, F. Pellé, E. Hollande, and A. Lebugle, “Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells,” Biomaterials24(19), 3365–3371 (2003).
    [CrossRef] [PubMed]
  26. X. H. Chuaia, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang, and K. Chi-Chou, “Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+,” J. Alloy. Comp.334, 211–218 (2002).
  27. M. Karbowiak and S. Hubert, “Site-selective emission spectra of Eu3+:Ca5(PO4)3F,” J. Alloy. Comp.302(1-2), 87–93 (2000).
    [CrossRef]
  28. B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
    [CrossRef]
  29. K. Madhukumar, H. K. Varma, M. Komath, T. S. Elias, V. Padmanabhan, and C. M. K. Nair, “Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium,” Bull. Mater. Sci.30(5), 527–534 (2007).
    [CrossRef]
  30. W. Xue, S. Zhai, and H. Zheng, “Synthesis and photoluminescence properties of Eu3+-doped γ-Ca3(PO4)2,” Mater. Chem. Phys.133(1), 324–327 (2012).
    [CrossRef]
  31. D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc.31(7), 1211–1218 (2011).
    [CrossRef]
  32. F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram.47, 352–357 (2008).
    [CrossRef]
  33. F. J. Ester and J. I. Peña, “Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique,” Bol. Soc. Esp. Ceram.46, 240–246 (2007).
    [CrossRef]
  34. A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” J. Biomed. Mater. Res. A65A(2), 188–195 (2003).
    [CrossRef] [PubMed]
  35. Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc.25(9), 1507–1514 (2005).
    [CrossRef]

2012 (3)

M. Magallanes-Perdomo, A. H. De Aza, I. Sobrados, J. Sanz, and P. Pena, “Structure and properties of bioactive eutectic glasses based on the Ca3(PO4)2-CaSiO3-CaMg(SiO3)2 system,” Acta Biomater.8(2), 820–829 (2012).
[CrossRef] [PubMed]

D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express20(10), 10701–10711 (2012).
[CrossRef] [PubMed]

W. Xue, S. Zhai, and H. Zheng, “Synthesis and photoluminescence properties of Eu3+-doped γ-Ca3(PO4)2,” Mater. Chem. Phys.133(1), 324–327 (2012).
[CrossRef]

2011 (5)

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc.31(7), 1211–1218 (2011).
[CrossRef]

H. Nagabhushana, B. M. Nagabhushana, M. Madesh Kumar, K. V. R. Chikkahanumantharayappa, K. V. R. Murthy, C. Shivakumara, and R. P. S. Chakradhar, “Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor,” Spectrochimica Acta Part A78(1), 64–69 (2011).
[CrossRef]

X. Kang, S. Huang, P. Yang, P. Ma, D. Yang, and J. Lin, “Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route,” Dalton Trans.40(9), 1873–1879 (2011).
[CrossRef] [PubMed]

Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011).
[CrossRef] [PubMed]

R. G. Carrodeguas and S. De Aza, “α-Tricalcium phosphate: Synthesis, properties and biomedical applications,” Acta Biomater.7(10), 3536–3546 (2011).
[CrossRef] [PubMed]

2009 (3)

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater.31(9), 1319–1322 (2009).
[CrossRef]

2008 (3)

Q. Yu, Y. Liu, S. Wu, X. Lü, X. Huang, and X. Li, “Luminescence properties of Ca2SiO4:Eu3+ red phosphor for trichromatic white light emitting diodes,” J. Rare Earths26(6), 783–786 (2008).
[CrossRef]

C. Cascales, R. Balda, V. Jubera, J. P. Chaminade, and J. Fernández, “Optical spectroscopic study of Eu3+ crystal field sites in Na3La9O3(BO3)8 crystal,” Opt. Express16(4), 2653–2662 (2008).
[CrossRef] [PubMed]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram.47, 352–357 (2008).
[CrossRef]

2007 (2)

F. J. Ester and J. I. Peña, “Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique,” Bol. Soc. Esp. Ceram.46, 240–246 (2007).
[CrossRef]

K. Madhukumar, H. K. Varma, M. Komath, T. S. Elias, V. Padmanabhan, and C. M. K. Nair, “Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium,” Bull. Mater. Sci.30(5), 527–534 (2007).
[CrossRef]

2006 (1)

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci.51(6), 711–809 (2006).
[CrossRef]

2005 (2)

Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc.25(9), 1507–1514 (2005).
[CrossRef]

C. Cascales, J. Fernández, and R. Balda, “Investigation of site-selective symmetries of Eu3+ ions in KPb2Cl5 by using optical spectroscopy,” Opt. Express13(6), 2141–2152 (2005).
[CrossRef] [PubMed]

2003 (3)

S. J. Dhoble, N. S. Dhoble, and R. B. Pode, “Preparation and characterization of Eu3+ activated CaSiO3, (CaA)SiO3 [A = Ba or Sr] phosphors,” Bull. Mater. Sci.26(4), 377–382 (2003).
[CrossRef]

A. Doat, M. Fanjul, F. Pellé, E. Hollande, and A. Lebugle, “Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells,” Biomaterials24(19), 3365–3371 (2003).
[CrossRef] [PubMed]

A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” J. Biomed. Mater. Res. A65A(2), 188–195 (2003).
[CrossRef] [PubMed]

2002 (2)

X. H. Chuaia, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang, and K. Chi-Chou, “Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+,” J. Alloy. Comp.334, 211–218 (2002).

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids298(1), 23–31 (2002).
[CrossRef]

2000 (1)

M. Karbowiak and S. Hubert, “Site-selective emission spectra of Eu3+:Ca5(PO4)3F,” J. Alloy. Comp.302(1-2), 87–93 (2000).
[CrossRef]

1998 (1)

P. N. de Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater.46(7), 2541–2549 (1998).
[CrossRef]

1997 (3)

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B56(17), 10907–10915 (1997).
[CrossRef]

V. M. Orera, J. I. Peña, R. I. Merino, J. A. Lazaro, J. A. Valles, and M. A. Rebolledo, “Prospects of new planar optical waveguides based on eutectic microcomposites of insulating crystals: The ZrO2(c)-CaZrO3 erbium doped system,” Appl. Phys. Lett.71(19), 2746–2748 (1997).
[CrossRef]

P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials18(19), 1285–1291 (1997).
[CrossRef] [PubMed]

1996 (1)

R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence-line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphates glass,” Phys. Rev. B54(17), 12076–12086 (1996).
[CrossRef]

1995 (1)

P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc.78(6), 1653–1656 (1995).
[CrossRef]

1991 (1)

L. L. Hench, “Bioceramics: From Concept to Clinic,” J. Am. Ceram. Soc.74(7), 1487–1510 (1991).
[CrossRef]

1987 (1)

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

1971 (1)

L. L. Hench, R. J. Splinter, T. K. Greenle, and W. C. Allen, “Bonding mechanisms at the interface of ceramic prosthetic materials,” J. Biomed. Mater. Res.2, 117–141 (1971).

Adam, J. L.

R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence-line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphates glass,” Phys. Rev. B54(17), 12076–12086 (1996).
[CrossRef]

Allen, W. C.

L. L. Hench, R. J. Splinter, T. K. Greenle, and W. C. Allen, “Bonding mechanisms at the interface of ceramic prosthetic materials,” J. Biomed. Mater. Res.2, 117–141 (1971).

Arriandiaga, M. A.

R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence-line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphates glass,” Phys. Rev. B54(17), 12076–12086 (1996).
[CrossRef]

Azkargorta, J.

Balda, R.

Carrodeguas, R. G.

R. G. Carrodeguas and S. De Aza, “α-Tricalcium phosphate: Synthesis, properties and biomedical applications,” Acta Biomater.7(10), 3536–3546 (2011).
[CrossRef] [PubMed]

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

Cascales, C.

Cases, R.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids298(1), 23–31 (2002).
[CrossRef]

Chakradhar, R. P. S.

H. Nagabhushana, B. M. Nagabhushana, M. Madesh Kumar, K. V. R. Chikkahanumantharayappa, K. V. R. Murthy, C. Shivakumara, and R. P. S. Chakradhar, “Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor,” Spectrochimica Acta Part A78(1), 64–69 (2011).
[CrossRef]

Chaminade, J. P.

Chang, J.

Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc.25(9), 1507–1514 (2005).
[CrossRef]

Cheng, Z.

Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011).
[CrossRef] [PubMed]

Chi-Chou, K.

X. H. Chuaia, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang, and K. Chi-Chou, “Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+,” J. Alloy. Comp.334, 211–218 (2002).

Chikkahanumantharayappa, K. V. R.

H. Nagabhushana, B. M. Nagabhushana, M. Madesh Kumar, K. V. R. Chikkahanumantharayappa, K. V. R. Murthy, C. Shivakumara, and R. P. S. Chakradhar, “Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor,” Spectrochimica Acta Part A78(1), 64–69 (2011).
[CrossRef]

Chuaia, X. H.

X. H. Chuaia, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang, and K. Chi-Chou, “Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+,” J. Alloy. Comp.334, 211–218 (2002).

De Aza, A. H.

M. Magallanes-Perdomo, A. H. De Aza, I. Sobrados, J. Sanz, and P. Pena, “Structure and properties of bioactive eutectic glasses based on the Ca3(PO4)2-CaSiO3-CaMg(SiO3)2 system,” Acta Biomater.8(2), 820–829 (2012).
[CrossRef] [PubMed]

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

De Aza, P. N.

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

P. N. de Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater.46(7), 2541–2549 (1998).
[CrossRef]

P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials18(19), 1285–1291 (1997).
[CrossRef] [PubMed]

P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc.78(6), 1653–1656 (1995).
[CrossRef]

De Aza, S.

R. G. Carrodeguas and S. De Aza, “α-Tricalcium phosphate: Synthesis, properties and biomedical applications,” Acta Biomater.7(10), 3536–3546 (2011).
[CrossRef] [PubMed]

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

P. N. de Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater.46(7), 2541–2549 (1998).
[CrossRef]

P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials18(19), 1285–1291 (1997).
[CrossRef] [PubMed]

P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc.78(6), 1653–1656 (1995).
[CrossRef]

de la Fuente, G. F.

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B56(17), 10907–10915 (1997).
[CrossRef]

Dexpert-Ghys, J.

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

Dhoble, N. S.

S. J. Dhoble, N. S. Dhoble, and R. B. Pode, “Preparation and characterization of Eu3+ activated CaSiO3, (CaA)SiO3 [A = Ba or Sr] phosphors,” Bull. Mater. Sci.26(4), 377–382 (2003).
[CrossRef]

Dhoble, S. J.

S. J. Dhoble, N. S. Dhoble, and R. B. Pode, “Preparation and characterization of Eu3+ activated CaSiO3, (CaA)SiO3 [A = Ba or Sr] phosphors,” Bull. Mater. Sci.26(4), 377–382 (2003).
[CrossRef]

Doat, A.

A. Doat, M. Fanjul, F. Pellé, E. Hollande, and A. Lebugle, “Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells,” Biomaterials24(19), 3365–3371 (2003).
[CrossRef] [PubMed]

Elias, T. S.

K. Madhukumar, H. K. Varma, M. Komath, T. S. Elias, V. Padmanabhan, and C. M. K. Nair, “Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium,” Bull. Mater. Sci.30(5), 527–534 (2007).
[CrossRef]

Ester, F. J.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc.31(7), 1211–1218 (2011).
[CrossRef]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram.47, 352–357 (2008).
[CrossRef]

F. J. Ester and J. I. Peña, “Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique,” Bol. Soc. Esp. Ceram.46, 240–246 (2007).
[CrossRef]

Fahmi, D.

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

Fan, Y.

Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011).
[CrossRef] [PubMed]

Fanjul, M.

A. Doat, M. Fanjul, F. Pellé, E. Hollande, and A. Lebugle, “Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells,” Biomaterials24(19), 3365–3371 (2003).
[CrossRef] [PubMed]

Fernández, J.

Furuya, T.

A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” J. Biomed. Mater. Res. A65A(2), 188–195 (2003).
[CrossRef] [PubMed]

García-Revilla, S.

Gou, Z.

Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc.25(9), 1507–1514 (2005).
[CrossRef]

Greenle, T. K.

L. L. Hench, R. J. Splinter, T. K. Greenle, and W. C. Allen, “Bonding mechanisms at the interface of ceramic prosthetic materials,” J. Biomed. Mater. Res.2, 117–141 (1971).

Guitian, F.

P. N. de Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater.46(7), 2541–2549 (1998).
[CrossRef]

P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc.78(6), 1653–1656 (1995).
[CrossRef]

Guitián, F.

P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials18(19), 1285–1291 (1997).
[CrossRef] [PubMed]

Hench, L. L.

L. L. Hench, “Bioceramics: From Concept to Clinic,” J. Am. Ceram. Soc.74(7), 1487–1510 (1991).
[CrossRef]

L. L. Hench, R. J. Splinter, T. K. Greenle, and W. C. Allen, “Bonding mechanisms at the interface of ceramic prosthetic materials,” J. Biomed. Mater. Res.2, 117–141 (1971).

Hollande, E.

A. Doat, M. Fanjul, F. Pellé, E. Hollande, and A. Lebugle, “Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells,” Biomaterials24(19), 3365–3371 (2003).
[CrossRef] [PubMed]

Huang, S.

X. Kang, S. Huang, P. Yang, P. Ma, D. Yang, and J. Lin, “Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route,” Dalton Trans.40(9), 1873–1879 (2011).
[CrossRef] [PubMed]

Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011).
[CrossRef] [PubMed]

Huang, X.

Q. Yu, Y. Liu, S. Wu, X. Lü, X. Huang, and X. Li, “Luminescence properties of Ca2SiO4:Eu3+ red phosphor for trichromatic white light emitting diodes,” J. Rare Earths26(6), 783–786 (2008).
[CrossRef]

Hubert, S.

M. Karbowiak and S. Hubert, “Site-selective emission spectra of Eu3+:Ca5(PO4)3F,” J. Alloy. Comp.302(1-2), 87–93 (2000).
[CrossRef]

Iparraguirre, I.

Jiang, J.

Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011).
[CrossRef] [PubMed]

Jubera, V.

Kang, X.

X. Kang, S. Huang, P. Yang, P. Ma, D. Yang, and J. Lin, “Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route,” Dalton Trans.40(9), 1873–1879 (2011).
[CrossRef] [PubMed]

Karbowiak, M.

M. Karbowiak and S. Hubert, “Site-selective emission spectra of Eu3+:Ca5(PO4)3F,” J. Alloy. Comp.302(1-2), 87–93 (2000).
[CrossRef]

Kim, H. M.

A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” J. Biomed. Mater. Res. A65A(2), 188–195 (2003).
[CrossRef] [PubMed]

Kokubo, T.

A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” J. Biomed. Mater. Res. A65A(2), 188–195 (2003).
[CrossRef] [PubMed]

Komath, M.

K. Madhukumar, H. K. Varma, M. Komath, T. S. Elias, V. Padmanabhan, and C. M. K. Nair, “Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium,” Bull. Mater. Sci.30(5), 527–534 (2007).
[CrossRef]

Lacout, J. L.

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

Larrea, A.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids298(1), 23–31 (2002).
[CrossRef]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B56(17), 10907–10915 (1997).
[CrossRef]

Lazaro, J. A.

V. M. Orera, J. I. Peña, R. I. Merino, J. A. Lazaro, J. A. Valles, and M. A. Rebolledo, “Prospects of new planar optical waveguides based on eutectic microcomposites of insulating crystals: The ZrO2(c)-CaZrO3 erbium doped system,” Appl. Phys. Lett.71(19), 2746–2748 (1997).
[CrossRef]

Lebugle, A.

A. Doat, M. Fanjul, F. Pellé, E. Hollande, and A. Lebugle, “Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells,” Biomaterials24(19), 3365–3371 (2003).
[CrossRef] [PubMed]

Li, F. Sh.

X. H. Chuaia, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang, and K. Chi-Chou, “Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+,” J. Alloy. Comp.334, 211–218 (2002).

Li, G.

Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011).
[CrossRef] [PubMed]

Li, X.

Q. Yu, Y. Liu, S. Wu, X. Lü, X. Huang, and X. Li, “Luminescence properties of Ca2SiO4:Eu3+ red phosphor for trichromatic white light emitting diodes,” J. Rare Earths26(6), 783–786 (2008).
[CrossRef]

Lian, H.

Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011).
[CrossRef] [PubMed]

Lin, J.

Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011).
[CrossRef] [PubMed]

X. Kang, S. Huang, P. Yang, P. Ma, D. Yang, and J. Lin, “Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route,” Dalton Trans.40(9), 1873–1879 (2011).
[CrossRef] [PubMed]

X. H. Chuaia, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang, and K. Chi-Chou, “Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+,” J. Alloy. Comp.334, 211–218 (2002).

Liu, Y.

Q. Yu, Y. Liu, S. Wu, X. Lü, X. Huang, and X. Li, “Luminescence properties of Ca2SiO4:Eu3+ red phosphor for trichromatic white light emitting diodes,” J. Rare Earths26(6), 783–786 (2008).
[CrossRef]

Llorca, J.

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci.51(6), 711–809 (2006).
[CrossRef]

Lu, Sh. Z.

X. H. Chuaia, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang, and K. Chi-Chou, “Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+,” J. Alloy. Comp.334, 211–218 (2002).

Lü, X.

Q. Yu, Y. Liu, S. Wu, X. Lü, X. Huang, and X. Li, “Luminescence properties of Ca2SiO4:Eu3+ red phosphor for trichromatic white light emitting diodes,” J. Rare Earths26(6), 783–786 (2008).
[CrossRef]

Ma, P.

X. Kang, S. Huang, P. Yang, P. Ma, D. Yang, and J. Lin, “Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route,” Dalton Trans.40(9), 1873–1879 (2011).
[CrossRef] [PubMed]

Madesh Kumar, M.

H. Nagabhushana, B. M. Nagabhushana, M. Madesh Kumar, K. V. R. Chikkahanumantharayappa, K. V. R. Murthy, C. Shivakumara, and R. P. S. Chakradhar, “Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor,” Spectrochimica Acta Part A78(1), 64–69 (2011).
[CrossRef]

Madhukumar, K.

K. Madhukumar, H. K. Varma, M. Komath, T. S. Elias, V. Padmanabhan, and C. M. K. Nair, “Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium,” Bull. Mater. Sci.30(5), 527–534 (2007).
[CrossRef]

Magallanes-Perdomo, M.

M. Magallanes-Perdomo, A. H. De Aza, I. Sobrados, J. Sanz, and P. Pena, “Structure and properties of bioactive eutectic glasses based on the Ca3(PO4)2-CaSiO3-CaMg(SiO3)2 system,” Acta Biomater.8(2), 820–829 (2012).
[CrossRef] [PubMed]

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

Merino, R. I.

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater.31(9), 1319–1322 (2009).
[CrossRef]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids298(1), 23–31 (2002).
[CrossRef]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B56(17), 10907–10915 (1997).
[CrossRef]

V. M. Orera, J. I. Peña, R. I. Merino, J. A. Lazaro, J. A. Valles, and M. A. Rebolledo, “Prospects of new planar optical waveguides based on eutectic microcomposites of insulating crystals: The ZrO2(c)-CaZrO3 erbium doped system,” Appl. Phys. Lett.71(19), 2746–2748 (1997).
[CrossRef]

Miyazaki, T.

A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” J. Biomed. Mater. Res. A65A(2), 188–195 (2003).
[CrossRef] [PubMed]

Murthy, K. V. R.

H. Nagabhushana, B. M. Nagabhushana, M. Madesh Kumar, K. V. R. Chikkahanumantharayappa, K. V. R. Murthy, C. Shivakumara, and R. P. S. Chakradhar, “Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor,” Spectrochimica Acta Part A78(1), 64–69 (2011).
[CrossRef]

Nagabhushana, B. M.

H. Nagabhushana, B. M. Nagabhushana, M. Madesh Kumar, K. V. R. Chikkahanumantharayappa, K. V. R. Murthy, C. Shivakumara, and R. P. S. Chakradhar, “Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor,” Spectrochimica Acta Part A78(1), 64–69 (2011).
[CrossRef]

Nagabhushana, H.

H. Nagabhushana, B. M. Nagabhushana, M. Madesh Kumar, K. V. R. Chikkahanumantharayappa, K. V. R. Murthy, C. Shivakumara, and R. P. S. Chakradhar, “Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor,” Spectrochimica Acta Part A78(1), 64–69 (2011).
[CrossRef]

Nair, C. M. K.

K. Madhukumar, H. K. Varma, M. Komath, T. S. Elias, V. Padmanabhan, and C. M. K. Nair, “Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium,” Bull. Mater. Sci.30(5), 527–534 (2007).
[CrossRef]

Nakamura, T.

A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” J. Biomed. Mater. Res. A65A(2), 188–195 (2003).
[CrossRef] [PubMed]

Oliete, P. B.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc.31(7), 1211–1218 (2011).
[CrossRef]

Orera, V. M.

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater.31(9), 1319–1322 (2009).
[CrossRef]

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci.51(6), 711–809 (2006).
[CrossRef]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids298(1), 23–31 (2002).
[CrossRef]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B56(17), 10907–10915 (1997).
[CrossRef]

V. M. Orera, J. I. Peña, R. I. Merino, J. A. Lazaro, J. A. Valles, and M. A. Rebolledo, “Prospects of new planar optical waveguides based on eutectic microcomposites of insulating crystals: The ZrO2(c)-CaZrO3 erbium doped system,” Appl. Phys. Lett.71(19), 2746–2748 (1997).
[CrossRef]

Oyane, A.

A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” J. Biomed. Mater. Res. A65A(2), 188–195 (2003).
[CrossRef] [PubMed]

Padmanabhan, V.

K. Madhukumar, H. K. Varma, M. Komath, T. S. Elias, V. Padmanabhan, and C. M. K. Nair, “Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium,” Bull. Mater. Sci.30(5), 527–534 (2007).
[CrossRef]

Pardo, J. A.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids298(1), 23–31 (2002).
[CrossRef]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B56(17), 10907–10915 (1997).
[CrossRef]

Pellé, F.

A. Doat, M. Fanjul, F. Pellé, E. Hollande, and A. Lebugle, “Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells,” Biomaterials24(19), 3365–3371 (2003).
[CrossRef] [PubMed]

Pena, P.

M. Magallanes-Perdomo, A. H. De Aza, I. Sobrados, J. Sanz, and P. Pena, “Structure and properties of bioactive eutectic glasses based on the Ca3(PO4)2-CaSiO3-CaMg(SiO3)2 system,” Acta Biomater.8(2), 820–829 (2012).
[CrossRef] [PubMed]

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

Peña, J. I.

D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express20(10), 10701–10711 (2012).
[CrossRef] [PubMed]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc.31(7), 1211–1218 (2011).
[CrossRef]

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater.31(9), 1319–1322 (2009).
[CrossRef]

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram.47, 352–357 (2008).
[CrossRef]

F. J. Ester and J. I. Peña, “Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique,” Bol. Soc. Esp. Ceram.46, 240–246 (2007).
[CrossRef]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids298(1), 23–31 (2002).
[CrossRef]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B56(17), 10907–10915 (1997).
[CrossRef]

V. M. Orera, J. I. Peña, R. I. Merino, J. A. Lazaro, J. A. Valles, and M. A. Rebolledo, “Prospects of new planar optical waveguides based on eutectic microcomposites of insulating crystals: The ZrO2(c)-CaZrO3 erbium doped system,” Appl. Phys. Lett.71(19), 2746–2748 (1997).
[CrossRef]

Piriou, B.

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

Pode, R. B.

S. J. Dhoble, N. S. Dhoble, and R. B. Pode, “Preparation and characterization of Eu3+ activated CaSiO3, (CaA)SiO3 [A = Ba or Sr] phosphors,” Bull. Mater. Sci.26(4), 377–382 (2003).
[CrossRef]

Rebolledo, M. A.

V. M. Orera, J. I. Peña, R. I. Merino, J. A. Lazaro, J. A. Valles, and M. A. Rebolledo, “Prospects of new planar optical waveguides based on eutectic microcomposites of insulating crystals: The ZrO2(c)-CaZrO3 erbium doped system,” Appl. Phys. Lett.71(19), 2746–2748 (1997).
[CrossRef]

Rodríguez, M. A.

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

Sanz, J.

M. Magallanes-Perdomo, A. H. De Aza, I. Sobrados, J. Sanz, and P. Pena, “Structure and properties of bioactive eutectic glasses based on the Ca3(PO4)2-CaSiO3-CaMg(SiO3)2 system,” Acta Biomater.8(2), 820–829 (2012).
[CrossRef] [PubMed]

Shivakumara, C.

H. Nagabhushana, B. M. Nagabhushana, M. Madesh Kumar, K. V. R. Chikkahanumantharayappa, K. V. R. Murthy, C. Shivakumara, and R. P. S. Chakradhar, “Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor,” Spectrochimica Acta Part A78(1), 64–69 (2011).
[CrossRef]

Sobrados, I.

M. Magallanes-Perdomo, A. H. De Aza, I. Sobrados, J. Sanz, and P. Pena, “Structure and properties of bioactive eutectic glasses based on the Ca3(PO4)2-CaSiO3-CaMg(SiO3)2 system,” Acta Biomater.8(2), 820–829 (2012).
[CrossRef] [PubMed]

Sola, D.

D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express20(10), 10701–10711 (2012).
[CrossRef] [PubMed]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc.31(7), 1211–1218 (2011).
[CrossRef]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram.47, 352–357 (2008).
[CrossRef]

Splinter, R. J.

L. L. Hench, R. J. Splinter, T. K. Greenle, and W. C. Allen, “Bonding mechanisms at the interface of ceramic prosthetic materials,” J. Biomed. Mater. Res.2, 117–141 (1971).

Taitai, A.

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

Turrillas, X.

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

Valles, J. A.

V. M. Orera, J. I. Peña, R. I. Merino, J. A. Lazaro, J. A. Valles, and M. A. Rebolledo, “Prospects of new planar optical waveguides based on eutectic microcomposites of insulating crystals: The ZrO2(c)-CaZrO3 erbium doped system,” Appl. Phys. Lett.71(19), 2746–2748 (1997).
[CrossRef]

Varma, H. K.

K. Madhukumar, H. K. Varma, M. Komath, T. S. Elias, V. Padmanabhan, and C. M. K. Nair, “Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium,” Bull. Mater. Sci.30(5), 527–534 (2007).
[CrossRef]

Wang, Sh. B.

X. H. Chuaia, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang, and K. Chi-Chou, “Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+,” J. Alloy. Comp.334, 211–218 (2002).

Wu, S.

Q. Yu, Y. Liu, S. Wu, X. Lü, X. Huang, and X. Li, “Luminescence properties of Ca2SiO4:Eu3+ red phosphor for trichromatic white light emitting diodes,” J. Rare Earths26(6), 783–786 (2008).
[CrossRef]

Xue, W.

W. Xue, S. Zhai, and H. Zheng, “Synthesis and photoluminescence properties of Eu3+-doped γ-Ca3(PO4)2,” Mater. Chem. Phys.133(1), 324–327 (2012).
[CrossRef]

Yang, D.

X. Kang, S. Huang, P. Yang, P. Ma, D. Yang, and J. Lin, “Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route,” Dalton Trans.40(9), 1873–1879 (2011).
[CrossRef] [PubMed]

Yang, P.

X. Kang, S. Huang, P. Yang, P. Ma, D. Yang, and J. Lin, “Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route,” Dalton Trans.40(9), 1873–1879 (2011).
[CrossRef] [PubMed]

Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011).
[CrossRef] [PubMed]

Yu, Q.

Q. Yu, Y. Liu, S. Wu, X. Lü, X. Huang, and X. Li, “Luminescence properties of Ca2SiO4:Eu3+ red phosphor for trichromatic white light emitting diodes,” J. Rare Earths26(6), 783–786 (2008).
[CrossRef]

Zhai, S.

W. Xue, S. Zhai, and H. Zheng, “Synthesis and photoluminescence properties of Eu3+-doped γ-Ca3(PO4)2,” Mater. Chem. Phys.133(1), 324–327 (2012).
[CrossRef]

Zhai, W.

Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc.25(9), 1507–1514 (2005).
[CrossRef]

Zhang, H. J.

X. H. Chuaia, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang, and K. Chi-Chou, “Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+,” J. Alloy. Comp.334, 211–218 (2002).

Zheng, H.

W. Xue, S. Zhai, and H. Zheng, “Synthesis and photoluminescence properties of Eu3+-doped γ-Ca3(PO4)2,” Mater. Chem. Phys.133(1), 324–327 (2012).
[CrossRef]

Acta Biomater. (3)

M. Magallanes-Perdomo, A. H. De Aza, I. Sobrados, J. Sanz, and P. Pena, “Structure and properties of bioactive eutectic glasses based on the Ca3(PO4)2-CaSiO3-CaMg(SiO3)2 system,” Acta Biomater.8(2), 820–829 (2012).
[CrossRef] [PubMed]

M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009).
[CrossRef] [PubMed]

R. G. Carrodeguas and S. De Aza, “α-Tricalcium phosphate: Synthesis, properties and biomedical applications,” Acta Biomater.7(10), 3536–3546 (2011).
[CrossRef] [PubMed]

Acta Mater. (1)

P. N. de Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater.46(7), 2541–2549 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

V. M. Orera, J. I. Peña, R. I. Merino, J. A. Lazaro, J. A. Valles, and M. A. Rebolledo, “Prospects of new planar optical waveguides based on eutectic microcomposites of insulating crystals: The ZrO2(c)-CaZrO3 erbium doped system,” Appl. Phys. Lett.71(19), 2746–2748 (1997).
[CrossRef]

Biomaterials (2)

A. Doat, M. Fanjul, F. Pellé, E. Hollande, and A. Lebugle, “Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells,” Biomaterials24(19), 3365–3371 (2003).
[CrossRef] [PubMed]

P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials18(19), 1285–1291 (1997).
[CrossRef] [PubMed]

Bol. Soc. Esp. Ceram. (2)

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram.47, 352–357 (2008).
[CrossRef]

F. J. Ester and J. I. Peña, “Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique,” Bol. Soc. Esp. Ceram.46, 240–246 (2007).
[CrossRef]

Bull. Mater. Sci. (2)

S. J. Dhoble, N. S. Dhoble, and R. B. Pode, “Preparation and characterization of Eu3+ activated CaSiO3, (CaA)SiO3 [A = Ba or Sr] phosphors,” Bull. Mater. Sci.26(4), 377–382 (2003).
[CrossRef]

K. Madhukumar, H. K. Varma, M. Komath, T. S. Elias, V. Padmanabhan, and C. M. K. Nair, “Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium,” Bull. Mater. Sci.30(5), 527–534 (2007).
[CrossRef]

Dalton Trans. (1)

X. Kang, S. Huang, P. Yang, P. Ma, D. Yang, and J. Lin, “Preparation of luminescent and mesoporous Eu3+/Tb3+ doped calcium silicate microspheres as drug carriers via a template route,” Dalton Trans.40(9), 1873–1879 (2011).
[CrossRef] [PubMed]

J. Alloy. Comp. (2)

X. H. Chuaia, H. J. Zhang, F. Sh. Li, Sh. Z. Lu, J. Lin, Sh. B. Wang, and K. Chi-Chou, “Synthesis and luminescence properties of oxyapatite NaY9Si6O26 doped with Eu3+, Tb3+, Dy3+ and Pb2+,” J. Alloy. Comp.334, 211–218 (2002).

M. Karbowiak and S. Hubert, “Site-selective emission spectra of Eu3+:Ca5(PO4)3F,” J. Alloy. Comp.302(1-2), 87–93 (2000).
[CrossRef]

J. Am. Ceram. Soc. (2)

L. L. Hench, “Bioceramics: From Concept to Clinic,” J. Am. Ceram. Soc.74(7), 1487–1510 (1991).
[CrossRef]

P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc.78(6), 1653–1656 (1995).
[CrossRef]

J. Biomed. Mater. Res. (1)

L. L. Hench, R. J. Splinter, T. K. Greenle, and W. C. Allen, “Bonding mechanisms at the interface of ceramic prosthetic materials,” J. Biomed. Mater. Res.2, 117–141 (1971).

J. Biomed. Mater. Res. A (1)

A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, and T. Nakamura, “Preparation and assessment of revised simulated body fluids,” J. Biomed. Mater. Res. A65A(2), 188–195 (2003).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, and J. Lin, “Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu3+) as a drug carrier,” J. Colloid Interface Sci.357(2), 280–285 (2011).
[CrossRef] [PubMed]

J. Eur. Ceram. Soc. (2)

Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc.25(9), 1507–1514 (2005).
[CrossRef]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc.31(7), 1211–1218 (2011).
[CrossRef]

J. Lumin. (1)

B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai, and J. L. Lacout, “Unusual fluorescent properties of Eu3+ in oxyapatites,” J. Lumin.39(2), 97–103 (1987).
[CrossRef]

J. Non-Cryst. Solids (1)

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids298(1), 23–31 (2002).
[CrossRef]

J. Rare Earths (1)

Q. Yu, Y. Liu, S. Wu, X. Lü, X. Huang, and X. Li, “Luminescence properties of Ca2SiO4:Eu3+ red phosphor for trichromatic white light emitting diodes,” J. Rare Earths26(6), 783–786 (2008).
[CrossRef]

Mater. Chem. Phys. (1)

W. Xue, S. Zhai, and H. Zheng, “Synthesis and photoluminescence properties of Eu3+-doped γ-Ca3(PO4)2,” Mater. Chem. Phys.133(1), 324–327 (2012).
[CrossRef]

Opt. Express (4)

Opt. Mater. (1)

R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater.31(9), 1319–1322 (2009).
[CrossRef]

Phys. Rev. B (2)

R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence-line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphates glass,” Phys. Rev. B54(17), 12076–12086 (1996).
[CrossRef]

R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B56(17), 10907–10915 (1997).
[CrossRef]

Prog. Mater. Sci. (1)

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci.51(6), 711–809 (2006).
[CrossRef]

Spectrochimica Acta Part A (1)

H. Nagabhushana, B. M. Nagabhushana, M. Madesh Kumar, K. V. R. Chikkahanumantharayappa, K. V. R. Murthy, C. Shivakumara, and R. P. S. Chakradhar, “Synthesis, characterization and photoluminescence properties of CaSiO3: Eu3+ red phosphor,” Spectrochimica Acta Part A78(1), 64–69 (2011).
[CrossRef]

Other (1)

K. De Groot and R. Le Geros, Significance of Porosity and Physical Chemistry of Calcium Phosphate Ceramics, P. Ducheyne, ed. (Ann. N.Y. Acad. Sci.,1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Longitudinal-section of the glass-ceramic samples doped with 0.5 wt% of Eu2O3 grown at 50 mm/h (a) and 500 mm/h (b). The insets in the micrographs show the details of the microstructure in a cross-section view.

Fig. 2
Fig. 2

Cross-section micrograph of a glass-ceramic sample doped with 0.5 wt% of Eu2O3 grown at 50 mm/h. The insets show the electron backscatter diffraction patterns corresponding to an oxyapatite structure found in the clear phase, (1), and to the dicalcium silicate found in the dark phase, (2).

Fig. 3
Fig. 3

Longitudinal -section micrograph of a glass-ceramic sample doped with 0.5 wt% of Eu2O3 grown at 50 mm/h after an immersion period of three months in simulated body fluid (SBF).

Fig. 4
Fig. 4

5D0→F0, 1, 2 emissions of Eu3+ in the sample grown at (a) 50 mm/h and (b) 500 mm/h obtained at different excitation wavelengths along the 7F05D0 absorption band. Data correspond to 10 K.

Fig. 5
Fig. 5

5D0→F0, 1, 2 emissions of Eu3+ for the glass-ceramic samples grown at 50 and 500 mm/h and for the glass sample obtained under excitation at 579.1 nm Data correspond to 10 K.

Fig. 6
Fig. 6

Low temperature excitation spectra of the 7F05D0 transition for the glass-ceramic samples grown at 50 and 500 mm/h and for the glass sample obtained by collecting the luminescence at the 5D07F2 emission.

Fig. 7
Fig. 7

Experimental decays of the 5D0 level obtained under excitation at (a) 574 and (b) 579.1 nm and collecting the luminescence at the 5D07F2 emission for the sample grown at 50 mm/h.

Tables (2)

Tables Icon

Table 1 Compositional analysis of the W-TCP eutectic glass-ceramics in wt% together with the growth rate, V, the theoretical eutectic composition and the nominal doping composition of Eu2O3.

Tables Icon

Table 2 Compositional analysis in wt% of the phases present in the eutectic glass-ceramic samples grown at 50 and 500 mm/h.

Metrics