Abstract

A highly spectral-efficient M-ary amplitude shift keying M-ary quadrature amplitude modulation orthogonal frequency division multiplexing (MASK-MQAM-OFDM) was proposed for the access network. With the highly spectral-efficient characteristic of MASK-MQAM-OFDM, seamless integration among passive-optical network (PON), wireless fiber-to-the-antenna (FTTA), and optical wireless visible light communication (VLC) can be achieved without using extra bandwidth for different services. A proof-of-concept experiment was demonstrated. The relation between the spectral efficiency of the MASK-MQAM-OFDM and the upstream signal performance was also discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Chow, F. M. Kuo, J. W. Shi, C. H. Yeh, Y. F. Wu, and C. L. Pan, “100 GHz ultra-wideband wireless system for the fiber to the antenna networks,” in Proc. OFC, San Diego, USA, 2010, Paper OThF1.
  2. W.-Y. Lin, C.-H. Chang, P.-C. Peng, H.-H. Lu, and C.-H. Huang, “Direct CATV modulation and phase remodulated radio-over-fiber transport system,” Opt. Express18(10), 10301–10307 (2010).
    [CrossRef] [PubMed]
  3. C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express20(15), 16218–16223 (2012).
    [CrossRef]
  4. Y. Tian and Y. Su, “A WDM-PON system providing quadruple play service with converged optical and wireless access,” in 34th European Conference on Optical Communication, (Brussels, 2008), Paper P.6.07.
  5. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” J. Opt. Netw.4(11), 737–758 (2005).
    [CrossRef]
  6. B. Zhang, Y. Lu, D. Wang, J. Zhang, and B. Yang, “A wireless access architecture based on radio over fiber technology for telemedicine system,” in Proc. IEEE/ICME, Beijing, 2007, 349–352.
  7. J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A comparative study of wireless protocols: bluetooth, UWB, ZigBee, and Wi-Fi,” in The 33rd Annual Conference of the IEEE Industrial Electronics Society (Taipei, 2007), pp. 46–51.
  8. C. W. Chow, C. H. Wang, C. H. Yeh, and S. Chi, “Analysis of the carrier-suppressed single-sideband modulators used to mitigate Rayleigh backscattering in carrier-distributed PON,” Opt. Express19(11), 10973–10978 (2011).
    [CrossRef] [PubMed]
  9. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation high split-ratio hybrid WDM-TDM PONs using RSOA-based ONUs,” Electron. Lett.45(17), 903–905 (2009).
    [CrossRef]

2012 (1)

2011 (1)

2010 (1)

2009 (1)

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation high split-ratio hybrid WDM-TDM PONs using RSOA-based ONUs,” Electron. Lett.45(17), 903–905 (2009).
[CrossRef]

2005 (1)

Banerjee, A.

Chang, C.-H.

Chi, S.

C. W. Chow, C. H. Wang, C. H. Yeh, and S. Chi, “Analysis of the carrier-suppressed single-sideband modulators used to mitigate Rayleigh backscattering in carrier-distributed PON,” Opt. Express19(11), 10973–10978 (2011).
[CrossRef] [PubMed]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation high split-ratio hybrid WDM-TDM PONs using RSOA-based ONUs,” Electron. Lett.45(17), 903–905 (2009).
[CrossRef]

Chow, C. W.

Clarke, F.

Huang, C.-H.

Huang, P. Y.

Kim, K.

Kramer, G.

Lin, W.-Y.

Liu, Y.

Liu, Y. F.

Lu, H.-H.

Mukherjee, B.

Park, Y.

Peng, P.-C.

Shih, F. Y.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation high split-ratio hybrid WDM-TDM PONs using RSOA-based ONUs,” Electron. Lett.45(17), 903–905 (2009).
[CrossRef]

Song, H.

Tsang, H. K.

Wang, C. H.

C. W. Chow, C. H. Wang, C. H. Yeh, and S. Chi, “Analysis of the carrier-suppressed single-sideband modulators used to mitigate Rayleigh backscattering in carrier-distributed PON,” Opt. Express19(11), 10973–10978 (2011).
[CrossRef] [PubMed]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation high split-ratio hybrid WDM-TDM PONs using RSOA-based ONUs,” Electron. Lett.45(17), 903–905 (2009).
[CrossRef]

Yang, S.

Yeh, C. H.

Electron. Lett. (1)

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation high split-ratio hybrid WDM-TDM PONs using RSOA-based ONUs,” Electron. Lett.45(17), 903–905 (2009).
[CrossRef]

J. Opt. Netw. (1)

Opt. Express (3)

Other (4)

C. W. Chow, F. M. Kuo, J. W. Shi, C. H. Yeh, Y. F. Wu, and C. L. Pan, “100 GHz ultra-wideband wireless system for the fiber to the antenna networks,” in Proc. OFC, San Diego, USA, 2010, Paper OThF1.

Y. Tian and Y. Su, “A WDM-PON system providing quadruple play service with converged optical and wireless access,” in 34th European Conference on Optical Communication, (Brussels, 2008), Paper P.6.07.

B. Zhang, Y. Lu, D. Wang, J. Zhang, and B. Yang, “A wireless access architecture based on radio over fiber technology for telemedicine system,” in Proc. IEEE/ICME, Beijing, 2007, 349–352.

J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A comparative study of wireless protocols: bluetooth, UWB, ZigBee, and Wi-Fi,” in The 33rd Annual Conference of the IEEE Industrial Electronics Society (Taipei, 2007), pp. 46–51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Modulation and de-modulation process of the MASK-MQAM-OFDM coding, (b) time trace of typical OFDM coding, (c) time trace of proposed MASK-MQAM-OFDM coding.

Fig. 2
Fig. 2

Proposed service-integrated network architecture using MASK-MQAM-OFDM modulation.

Fig. 3
Fig. 3

Schematic diagrams of (a) downstream and (a) upstream (generated by RSOA and DP-MZM) signals.

Fig. 4
Fig. 4

Proof-of-concept experiment. Inset: (a) optical spectra of downstream and upstream signals; (b) time trace of 0.2 of maximum power for 2-ASK “zero” level; (c) 0.6 of maximum power for 2-ASK “zero” level; (d) time trace of the re-modulated upstream OOK signal.

Fig. 5
Fig. 5

BER performances of the downstream signals using (a) 0.6 of maximum power for 2-ASK “zero” level, (b) 0.7 of maximum power for 2-ASK “zero” level.

Fig. 6
Fig. 6

BER performances of upstream signals under different RSOA bias currents of (a) 50 mA, (b) 60 mA, (c) 70mA, and (d)80mA.

Metrics