Abstract

This paper presents a convenient and reliable method to prepare gold nanoparticles (AuNPs) on graphene. Photo-assisted synthesis (PAS) was employed to grow AuNPs in AuCl4 electrolyte on graphene. The size of AuNPs could be as large as 130 nm. This optical method had a steady growth rate of AuNPs. The distribution of AuNPs was well controlled by focusing the laser for PAS. The minimum diameter of the distribution was approximately 1 μm. Surface-enhanced Raman scattering of graphene due to AuNPs was observed. Electrical fields near AuNPs calculated by the finite-difference time-domain algorithm ensured that the Raman enhancement was attributed to the localized surface plasmons of AuNPs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
    [CrossRef]
  2. L. Authier, C. Grossiord, P. Brossier, and B. Limoges, “Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes,” Anal. Chem.73(18), 4450–4456 (2001).
    [CrossRef] [PubMed]
  3. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002).
    [CrossRef] [PubMed]
  4. Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RCS Adv.2(2), 538–545 (2012).
  5. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis22(10), 1027–1036 (2010).
    [CrossRef]
  6. M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, and H. L. Poh, “Graphene for electrochemical sensing and biosensing,” Trends Analyt. Chem.29(9), 954–965 (2010).
    [CrossRef]
  7. W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, “Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors,” J. Phys. Chem. C114(4), 1822–1826 (2010).
    [CrossRef]
  8. M. Wirtz and C. R. Martin, “Template-fabricated gold nanowires and nanotubes,” Adv. Mater. (Deerfield Beach Fla.)15(5), 455–458 (2003).
    [CrossRef]
  9. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape,” Chem. Mater.12(2), 306–313 (2000).
    [CrossRef]
  10. Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS Nano4(5), 2689–2694 (2010).
    [CrossRef] [PubMed]
  11. K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology21(28), 285205 (2010).
    [CrossRef] [PubMed]
  12. J. Zhu, Y. Shen, A. Xie, L. Qin, Q. Zhang, and S. Zhang, “Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid,” J. Phys. Chem. C111(21), 7629–7633 (2007).
    [CrossRef]
  13. R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
    [CrossRef]
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2000).
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  16. D. Lau and S. Furman, “Fabrication of nanoparticle micro-arrays patterned using direct write laser photoreduction,” Appl. Surf. Sci.255(5), 2159–2161 (2008).
    [CrossRef]
  17. J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
    [CrossRef]
  18. N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater.13(7), 2313–2322 (2001).
    [CrossRef]
  19. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc.36(6–7), 485–496 (2005).
    [CrossRef]
  20. O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
    [CrossRef]
  21. T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
    [CrossRef] [PubMed]
  22. Z. Liu, C. Hu, S. Li, W. Zhang, and Z. Guo, “Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy,” Anal. Chem.84(23), 10338–10344 (2012).
    [CrossRef] [PubMed]
  23. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express18(14), 14395–14400 (2010).
    [CrossRef] [PubMed]

2012

Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RCS Adv.2(2), 538–545 (2012).

J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
[CrossRef]

Z. Liu, C. Hu, S. Li, W. Zhang, and Z. Guo, “Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy,” Anal. Chem.84(23), 10338–10344 (2012).
[CrossRef] [PubMed]

2011

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
[CrossRef]

2010

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis22(10), 1027–1036 (2010).
[CrossRef]

M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, and H. L. Poh, “Graphene for electrochemical sensing and biosensing,” Trends Analyt. Chem.29(9), 954–965 (2010).
[CrossRef]

W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, “Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors,” J. Phys. Chem. C114(4), 1822–1826 (2010).
[CrossRef]

Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS Nano4(5), 2689–2694 (2010).
[CrossRef] [PubMed]

K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology21(28), 285205 (2010).
[CrossRef] [PubMed]

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express18(14), 14395–14400 (2010).
[CrossRef] [PubMed]

2009

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

2008

D. Lau and S. Furman, “Fabrication of nanoparticle micro-arrays patterned using direct write laser photoreduction,” Appl. Surf. Sci.255(5), 2159–2161 (2008).
[CrossRef]

2007

J. Zhu, Y. Shen, A. Xie, L. Qin, Q. Zhang, and S. Zhang, “Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid,” J. Phys. Chem. C111(21), 7629–7633 (2007).
[CrossRef]

2005

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc.36(6–7), 485–496 (2005).
[CrossRef]

2004

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

2003

M. Wirtz and C. R. Martin, “Template-fabricated gold nanowires and nanotubes,” Adv. Mater. (Deerfield Beach Fla.)15(5), 455–458 (2003).
[CrossRef]

2002

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

2001

L. Authier, C. Grossiord, P. Brossier, and B. Limoges, “Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes,” Anal. Chem.73(18), 4450–4456 (2001).
[CrossRef] [PubMed]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater.13(7), 2313–2322 (2001).
[CrossRef]

2000

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape,” Chem. Mater.12(2), 306–313 (2000).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Aksay, I. A.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis22(10), 1027–1036 (2010).
[CrossRef]

Ambrosi, A.

M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, and H. L. Poh, “Graphene for electrochemical sensing and biosensing,” Trends Analyt. Chem.29(9), 954–965 (2010).
[CrossRef]

Authier, L.

L. Authier, C. Grossiord, P. Brossier, and B. Limoges, “Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes,” Anal. Chem.73(18), 4450–4456 (2001).
[CrossRef] [PubMed]

Bai, H.

W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, “Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors,” J. Phys. Chem. C114(4), 1822–1826 (2010).
[CrossRef]

Bonanni, A.

M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, and H. L. Poh, “Graphene for electrochemical sensing and biosensing,” Trends Analyt. Chem.29(9), 954–965 (2010).
[CrossRef]

Brossier, P.

L. Authier, C. Grossiord, P. Brossier, and B. Limoges, “Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes,” Anal. Chem.73(18), 4450–4456 (2001).
[CrossRef] [PubMed]

Brown, K. R.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape,” Chem. Mater.12(2), 306–313 (2000).
[CrossRef]

Chang, C.-S.

J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
[CrossRef]

Chang, G.

Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RCS Adv.2(2), 538–545 (2012).

Chen, C.-H.

J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
[CrossRef]

Chen, J.-W.

J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
[CrossRef]

Chen, Y.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Chen, Y.-C.

J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
[CrossRef]

Chien, F. S.-S.

J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
[CrossRef]

Chng, E. L. K.

M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, and H. L. Poh, “Graphene for electrochemical sensing and biosensing,” Trends Analyt. Chem.29(9), 954–965 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Chu, H. S.

Chuang, T. J.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

Ferrari, A. C.

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
[CrossRef]

Frank, O.

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
[CrossRef]

Furman, S.

D. Lau and S. Furman, “Fabrication of nanoparticle micro-arrays patterned using direct write laser photoreduction,” Appl. Surf. Sci.255(5), 2159–2161 (2008).
[CrossRef]

Galiotis, C.

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
[CrossRef]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater.13(7), 2313–2322 (2001).
[CrossRef]

Geim, A. K.

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
[CrossRef]

Grossiord, C.

L. Authier, C. Grossiord, P. Brossier, and B. Limoges, “Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes,” Anal. Chem.73(18), 4450–4456 (2001).
[CrossRef] [PubMed]

Gu, Z.

W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, “Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors,” J. Phys. Chem. C114(4), 1822–1826 (2010).
[CrossRef]

Guo, Z.

Z. Liu, C. Hu, S. Li, W. Zhang, and Z. Guo, “Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy,” Anal. Chem.84(23), 10338–10344 (2012).
[CrossRef] [PubMed]

Gwo, S.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

Hofmann, M.

Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS Nano4(5), 2689–2694 (2010).
[CrossRef] [PubMed]

Hong, I.-H.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Hong, W.

W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, “Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors,” J. Phys. Chem. C114(4), 1822–1826 (2010).
[CrossRef]

Hu, C.

Z. Liu, C. Hu, S. Li, W. Zhang, and Z. Guo, “Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy,” Anal. Chem.84(23), 10338–10344 (2012).
[CrossRef] [PubMed]

Huang, Y.-C.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Hung, C.-S.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater.13(7), 2313–2322 (2001).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kim, K. K.

K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology21(28), 285205 (2010).
[CrossRef] [PubMed]

Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS Nano4(5), 2689–2694 (2010).
[CrossRef] [PubMed]

Klauser, R.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Koh, W. S.

Kong, J.

Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS Nano4(5), 2689–2694 (2010).
[CrossRef] [PubMed]

K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology21(28), 285205 (2010).
[CrossRef] [PubMed]

Lau, D.

D. Lau and S. Furman, “Fabrication of nanoparticle micro-arrays patterned using direct write laser photoreduction,” Appl. Surf. Sci.255(5), 2159–2161 (2008).
[CrossRef]

Lee, T.-H.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Lee, Y. H.

K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology21(28), 285205 (2010).
[CrossRef] [PubMed]

Li, E. P.

Li, L.-J.

Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS Nano4(5), 2689–2694 (2010).
[CrossRef] [PubMed]

K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology21(28), 285205 (2010).
[CrossRef] [PubMed]

Li, S.

Z. Liu, C. Hu, S. Li, W. Zhang, and Z. Guo, “Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy,” Anal. Chem.84(23), 10338–10344 (2012).
[CrossRef] [PubMed]

Liao, J.-D.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Limoges, B.

L. Authier, C. Grossiord, P. Brossier, and B. Limoges, “Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes,” Anal. Chem.73(18), 4450–4456 (2001).
[CrossRef] [PubMed]

Lin, C.-H.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Lin, C.-Y.

J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
[CrossRef]

Lin, Y.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis22(10), 1027–1036 (2010).
[CrossRef]

Lin, Y.-H.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Liu, J.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis22(10), 1027–1036 (2010).
[CrossRef]

Liu, S.

Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RCS Adv.2(2), 538–545 (2012).

Liu, T.-J.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Liu, T.-T.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, C. Hu, S. Li, W. Zhang, and Z. Guo, “Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy,” Anal. Chem.84(23), 10338–10344 (2012).
[CrossRef] [PubMed]

Lu, W.

Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RCS Adv.2(2), 538–545 (2012).

Martin, C. R.

M. Wirtz and C. R. Martin, “Template-fabricated gold nanowires and nanotubes,” Adv. Mater. (Deerfield Beach Fla.)15(5), 455–458 (2003).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc.36(6–7), 485–496 (2005).
[CrossRef]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater.13(7), 2313–2322 (2001).
[CrossRef]

Natan, M. J.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape,” Chem. Mater.12(2), 306–313 (2000).
[CrossRef]

Novoselov, K. S.

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
[CrossRef]

Papagelis, K.

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
[CrossRef]

Park, H.

K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology21(28), 285205 (2010).
[CrossRef] [PubMed]

Parthenios, J.

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
[CrossRef]

Poh, H. L.

M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, and H. L. Poh, “Graphene for electrochemical sensing and biosensing,” Trends Analyt. Chem.29(9), 954–965 (2010).
[CrossRef]

Pumera, M.

M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, and H. L. Poh, “Graphene for electrochemical sensing and biosensing,” Trends Analyt. Chem.29(9), 954–965 (2010).
[CrossRef]

Qin, L.

J. Zhu, Y. Shen, A. Xie, L. Qin, Q. Zhang, and S. Zhang, “Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid,” J. Phys. Chem. C111(21), 7629–7633 (2007).
[CrossRef]

Qin, X.

Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RCS Adv.2(2), 538–545 (2012).

Reina, A.

Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS Nano4(5), 2689–2694 (2010).
[CrossRef] [PubMed]

K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology21(28), 285205 (2010).
[CrossRef] [PubMed]

Riaz, I.

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
[CrossRef]

Shao, Y.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis22(10), 1027–1036 (2010).
[CrossRef]

Shen, Y.

J. Zhu, Y. Shen, A. Xie, L. Qin, Q. Zhang, and S. Zhang, “Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid,” J. Phys. Chem. C111(21), 7629–7633 (2007).
[CrossRef]

Shi, G.

W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, “Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors,” J. Phys. Chem. C114(4), 1822–1826 (2010).
[CrossRef]

Shi, Y.

K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology21(28), 285205 (2010).
[CrossRef] [PubMed]

Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS Nano4(5), 2689–2694 (2010).
[CrossRef] [PubMed]

Shiu, H. W.

J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
[CrossRef]

Sun, X.

Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RCS Adv.2(2), 538–545 (2012).

Tian, J.

Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RCS Adv.2(2), 538–545 (2012).

Tsai, T.-H.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Tsang, K.-L.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Tsoukleri, G.

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
[CrossRef]

Van Duyne, R. P.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

Walter, D. G.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape,” Chem. Mater.12(2), 306–313 (2000).
[CrossRef]

Wang, C.-L.

J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
[CrossRef]

Wang, D.-W.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Wang, H.-H.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Wang, J.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis22(10), 1027–1036 (2010).
[CrossRef]

Wang, J.-K.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Wang, L.

Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RCS Adv.2(2), 538–545 (2012).

Wang, S.-C.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Wang, Y.-L.

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

Wei, D.-H.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Wirtz, M.

M. Wirtz and C. R. Martin, “Template-fabricated gold nanowires and nanotubes,” Adv. Mater. (Deerfield Beach Fla.)15(5), 455–458 (2003).
[CrossRef]

Wu, C.-L.

J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
[CrossRef]

Wu, H.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis22(10), 1027–1036 (2010).
[CrossRef]

Wu, L.

Xie, A.

J. Zhu, Y. Shen, A. Xie, L. Qin, Q. Zhang, and S. Zhang, “Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid,” J. Phys. Chem. C111(21), 7629–7633 (2007).
[CrossRef]

Xu, Y.

W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, “Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors,” J. Phys. Chem. C114(4), 1822–1826 (2010).
[CrossRef]

Yao, Z.

W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, “Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors,” J. Phys. Chem. C114(4), 1822–1826 (2010).
[CrossRef]

Yin, G.-C.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Zhang, Q.

J. Zhu, Y. Shen, A. Xie, L. Qin, Q. Zhang, and S. Zhang, “Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid,” J. Phys. Chem. C111(21), 7629–7633 (2007).
[CrossRef]

Zhang, S.

J. Zhu, Y. Shen, A. Xie, L. Qin, Q. Zhang, and S. Zhang, “Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid,” J. Phys. Chem. C111(21), 7629–7633 (2007).
[CrossRef]

Zhang, W.

Z. Liu, C. Hu, S. Li, W. Zhang, and Z. Guo, “Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy,” Anal. Chem.84(23), 10338–10344 (2012).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RCS Adv.2(2), 538–545 (2012).

Zharnikov, M.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Zhu, J.

J. Zhu, Y. Shen, A. Xie, L. Qin, Q. Zhang, and S. Zhang, “Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid,” J. Phys. Chem. C111(21), 7629–7633 (2007).
[CrossRef]

ACS Nano

Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS Nano4(5), 2689–2694 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.)16(19), 1685–1706 (2004).
[CrossRef]

M. Wirtz and C. R. Martin, “Template-fabricated gold nanowires and nanotubes,” Adv. Mater. (Deerfield Beach Fla.)15(5), 455–458 (2003).
[CrossRef]

Anal. Chem.

L. Authier, C. Grossiord, P. Brossier, and B. Limoges, “Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes,” Anal. Chem.73(18), 4450–4456 (2001).
[CrossRef] [PubMed]

Z. Liu, C. Hu, S. Li, W. Zhang, and Z. Guo, “Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy,” Anal. Chem.84(23), 10338–10344 (2012).
[CrossRef] [PubMed]

Appl. Phys. Express

J.-W. Chen, C.-L. Wang, H. W. Shiu, C.-Y. Lin, C.-S. Chang, F. S.-S. Chien, C.-H. Chen, Y.-C. Chen, and C.-L. Wu, “Graphene on Au-coated SiOx substrate: its core-level photoelectron microspectroscopy study,” Appl. Phys. Express5(8), 085101 (2012).
[CrossRef]

Appl. Surf. Sci.

D. Lau and S. Furman, “Fabrication of nanoparticle micro-arrays patterned using direct write laser photoreduction,” Appl. Surf. Sci.255(5), 2159–2161 (2008).
[CrossRef]

Chem. Mater.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater.13(7), 2313–2322 (2001).
[CrossRef]

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape,” Chem. Mater.12(2), 306–313 (2000).
[CrossRef]

Electroanalysis

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: a review,” Electroanalysis22(10), 1027–1036 (2010).
[CrossRef]

J. Am. Chem. Soc.

A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124(35), 10596–10604 (2002).
[CrossRef] [PubMed]

J. Phys. Chem. C

J. Zhu, Y. Shen, A. Xie, L. Qin, Q. Zhang, and S. Zhang, “Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid,” J. Phys. Chem. C111(21), 7629–7633 (2007).
[CrossRef]

W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, “Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors,” J. Phys. Chem. C114(4), 1822–1826 (2010).
[CrossRef]

J. Raman Spectrosc.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc.36(6–7), 485–496 (2005).
[CrossRef]

Nanotechnology

K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, “Enhancing the conductivity of transparent graphene films via doping,” Nanotechnology21(28), 285205 (2010).
[CrossRef] [PubMed]

Nat. Commun.

O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, and C. Galiotis, “Development of a universal stress sensor for graphene and carbon fibres,” Nat. Commun.2, 255 (2011).
[CrossRef]

Opt. Express

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

PLoS ONE

T.-T. Liu, Y.-H. Lin, C.-S. Hung, T.-J. Liu, Y. Chen, Y.-C. Huang, T.-H. Tsai, H.-H. Wang, D.-W. Wang, J.-K. Wang, Y.-L. Wang, and C.-H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE4(5), e5470 (2009).
[CrossRef] [PubMed]

RCS Adv.

Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun, “One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing,” RCS Adv.2(2), 538–545 (2012).

Surf. Rev. Lett.

R. Klauser, I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, K.-L. Tsang, T. J. Chuang, S.-C. Wang, S. Gwo, M. Zharnikov, and J.-D. Liao, “Zone-plate-based scanning photoelectron microscopy at SRRC: performance and applications,” Surf. Rev. Lett.09(01), 213–222 (2002).
[CrossRef]

Trends Analyt. Chem.

M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, and H. L. Poh, “Graphene for electrochemical sensing and biosensing,” Trends Analyt. Chem.29(9), 954–965 (2010).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of photo-assisted synthesis of AuNPs on graphene in AuCl4 electrolyte and in situ micro Raman measurement (not to scale).

Fig. 2
Fig. 2

(a) SEM images of synthesized AuNPs distributed on graphene. The inset is the image of a 100 nm Au NP on graphene after 20 min of PAS. (b) Growth of synthesized AuNPs with the time of PAS. The red curve shows the fitting with Eq. (1).

Fig. 3
Fig. 3

(a) AFM image of AuNPs on graphene produced by different focusing of laser. The circles mark the areas of AuNPs under “in focus” (1), “out of focus” (2), and “further out of focus” (3) after 3 min irradiation each. The dashed line indicates the edge of graphene. (b) Raman mapping of G band (1560 cm−1 to 1620 cm−1) taken over the area of “out of focus”.

Fig. 4
Fig. 4

(a) Morphologic evolution of plated Au on graphene with the immersion duration in AuCl4 electrolyte. The insets in (a) is to illustrate the details of plated Au of 40 s and 80 s immersion. (b) The corresponding cross-sectional profiles along the dash lines in (a).

Fig. 5
Fig. 5

(a) Au 4f core-level photoelectron (PE) spectrum taken from Au-plated BLG, and (b) C 1s core-level spectra of pristine BLG and Au-plated BLG.

Fig. 6
Fig. 6

(a) Enhancement of G-band and 2D-band Raman intensity taken in situ during PAS. The arrow indicated when synthesized AuNPs were deposited on graphene. (b) Ex situ Raman spectra taken on pristine graphene and graphene with 100 nm AuNP in ambience.

Fig. 7
Fig. 7

(a) Illustration of a synthesized AuNP and a plated Au layer on graphene for modeling of EM field by 3D FDTD simulation. (b) Representative resultant absolute electric field distributions of 150 nm × 150 nm along the X-Z plane (across the center of AuNP) and X-Y plane (at the upper surface of graphene), respectively. The dashed lines denote where the graphene and plated Au layer locate, and the arrows indicate where the hot spots are. In the color scale, “blue” presents the zero field intensity and “red” the maximum field intensity. (c) The enhancement factor at the upper surface of graphene with respect to the diameter of AuNPs, where the dotted lines indicate the EF with a 100 nm AuNP is approximately 103.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D( t )= 6 π α( t- t 0 ) 3 ,
2AuCl 4 hν 2Au 0 +3Cl 2 +2Cl .
AuCl 4 +3e Au 0 +4Cl

Metrics