Abstract

This paper demonstrates stimulated Brillouin scattering (SBS) characterization in silica optical fiber tapers drawn from commercial single mode optical fibers by hydrogen flame. They have different waist diameters downscaled from 5 μm to 42 μm. The fully-distributed SBS measurement along the fiber tapers is implemented by Brillouin optical correlation domain analysis technique with millimeter spatial resolution. It is found that the Brillouin frequency shift (BFS) in the waist of all fiber tapers is approximately the same (i.e., ~11.17 GHz at 1550 nm). However, the BFS is gradually reduced and the Brillouin gain decreases from the waist to the untapered zone in each fiber taper.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  2. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B19(9), 2148–2155 (2002).
    [CrossRef]
  3. G. Humbert, W. Wadsworth, S. Leon-Saval, J. C. Knight, T. A. Birks, P. St J Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express14(4), 1596–1603 (2006).
    [CrossRef] [PubMed]
  4. W. Long, W. Zou, X. Li, and J. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express20(16), 18188–18193 (2012).
    [CrossRef] [PubMed]
  5. Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).
    [CrossRef]
  6. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
    [CrossRef]
  7. H. Luo, X. Li, W. Zou, X. Li, Z. Hong, and J. Chen, “Temperature-insensitive micro-displacement sensor based on locally bent microfiber taper modal interferometer,” IEEE Photon. J.4(3), 772–778 (2012).
    [CrossRef]
  8. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005).
    [CrossRef] [PubMed]
  9. C. Grillet, C. L. C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, “Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires,” Opt. Express14(3), 1070–1078 (2006).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  11. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express13(14), 5338–5346 (2005).
    [CrossRef] [PubMed]
  12. W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol.26(13), 1854–1861 (2008).
    [CrossRef]
  13. Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 μm,” IEEE Photon. Technol. Lett.24(17), 1496–1498 (2012).
    [CrossRef]
  14. D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol.15(4), 654–662 (1997).
    [CrossRef]
  15. X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett.24(8), 510–512 (1999).
    [CrossRef] [PubMed]
  16. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).
  17. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express17(3), 1248–1255 (2009).
    [CrossRef] [PubMed]
  18. W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett.22(8), 526–528 (2010).
    [CrossRef]
  19. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008).
    [CrossRef] [PubMed]
  20. W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express5(8), 082503 (2012).
    [CrossRef]
  21. J. Chen, X. Shen, Z. Hong, and X. Li, “Nanostructure optic-fiber-based devices for optical signal processing,” in OptoeElectronics and Communications Conference (OECC2010), pp. 550–551, invited paper 8E2–1.
  22. W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett.18(23), 2487–2489 (2006).
    [CrossRef]
  23. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
    [CrossRef]
  24. J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, and M. Koshiba, “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B25(4), 582–593 (2008).
    [CrossRef]
  25. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A14(8), 1760–1773 (1997).
    [CrossRef]
  26. http://www.mathworks.com/matlabcentral/fileexchange/27819-optical-fibre-toolbox
  27. K. Y. Song, Z. Y. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett.31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]

2012

H. Luo, X. Li, W. Zou, X. Li, Z. Hong, and J. Chen, “Temperature-insensitive micro-displacement sensor based on locally bent microfiber taper modal interferometer,” IEEE Photon. J.4(3), 772–778 (2012).
[CrossRef]

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 μm,” IEEE Photon. Technol. Lett.24(17), 1496–1498 (2012).
[CrossRef]

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express5(8), 082503 (2012).
[CrossRef]

W. Long, W. Zou, X. Li, and J. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express20(16), 18188–18193 (2012).
[CrossRef] [PubMed]

2010

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett.22(8), 526–528 (2010).
[CrossRef]

2009

2008

2007

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

2006

2005

2003

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2002

2000

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

1999

1997

T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A14(8), 1760–1773 (1997).
[CrossRef]

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol.15(4), 654–662 (1997).
[CrossRef]

1992

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
[CrossRef]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Bao, X.

Bickham, S. R.

Birks, T. A.

Breuer, E.

Brown, A.

Chen, J.

W. Long, W. Zou, X. Li, and J. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express20(16), 18188–18193 (2012).
[CrossRef] [PubMed]

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express5(8), 082503 (2012).
[CrossRef]

H. Luo, X. Li, W. Zou, X. Li, Z. Hong, and J. Chen, “Temperature-insensitive micro-displacement sensor based on locally bent microfiber taper modal interferometer,” IEEE Photon. J.4(3), 772–778 (2012).
[CrossRef]

Chowdhury, D. Q.

Demerchant, M.

Eggleton, B.

Erdogan, T.

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Freeman, D.

Garcus, D.

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol.15(4), 654–662 (1997).
[CrossRef]

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gogolla, T.

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol.15(4), 654–662 (1997).
[CrossRef]

Grillet, C.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

He, S.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

He, Z.

He, Z. Y.

Hong, Z.

H. Luo, X. Li, W. Zou, X. Li, Z. Hong, and J. Chen, “Temperature-insensitive micro-displacement sensor based on locally bent microfiber taper modal interferometer,” IEEE Photon. J.4(3), 772–778 (2012).
[CrossRef]

Hotate, K.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett.22(8), 526–528 (2010).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol.26(13), 1854–1861 (2008).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett.18(23), 2487–2489 (2006).
[CrossRef]

K. Y. Song, Z. Y. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett.31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

Humbert, G.

Jin, C.

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express5(8), 082503 (2012).
[CrossRef]

Knight, J. C.

Kobyakov, A.

Kopf, D.

Koshiba, M.

Krebber, K.

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 μm,” IEEE Photon. Technol. Lett.24(17), 1496–1498 (2012).
[CrossRef]

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol.15(4), 654–662 (1997).
[CrossRef]

Kumar, S.

Lederer, M.

Lenke, P.

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 μm,” IEEE Photon. Technol. Lett.24(17), 1496–1498 (2012).
[CrossRef]

Leon-Saval, S.

Li, X.

H. Luo, X. Li, W. Zou, X. Li, Z. Hong, and J. Chen, “Temperature-insensitive micro-displacement sensor based on locally bent microfiber taper modal interferometer,” IEEE Photon. J.4(3), 772–778 (2012).
[CrossRef]

H. Luo, X. Li, W. Zou, X. Li, Z. Hong, and J. Chen, “Temperature-insensitive micro-displacement sensor based on locally bent microfiber taper modal interferometer,” IEEE Photon. J.4(3), 772–778 (2012).
[CrossRef]

W. Long, W. Zou, X. Li, and J. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express20(16), 18188–18193 (2012).
[CrossRef] [PubMed]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
[CrossRef]

Long, W.

Lou, J.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Luo, H.

H. Luo, X. Li, W. Zou, X. Li, Z. Hong, and J. Chen, “Temperature-insensitive micro-displacement sensor based on locally bent microfiber taper modal interferometer,” IEEE Photon. J.4(3), 772–778 (2012).
[CrossRef]

Luther-Davies, B.

Madden, S.

Magi, E.

Man, T. P. M.

Mansuripur, M.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

McElhenny, J. E.

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Mishra, R.

Mizuno, Y.

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 μm,” IEEE Photon. Technol. Lett.24(17), 1496–1498 (2012).
[CrossRef]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008).
[CrossRef] [PubMed]

Morimune, K.

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).
[CrossRef]

Moss, D.

Nakamura, K.

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 μm,” IEEE Photon. Technol. Lett.24(17), 1496–1498 (2012).
[CrossRef]

Ortigosa-Blanch, A.

Pattnaik, R. K.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Pruneri, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Ruffin, A. B.

Russell, P. S. J.

Saitoh, K.

Sauer, M.

Schliep, F.

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol.15(4), 654–662 (1997).
[CrossRef]

Set, S. Y.

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).
[CrossRef]

Shen, M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Smith, C. L. C.

Smith, J.

Song, K. Y.

Song, Y. W.

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).
[CrossRef]

St J Russell, P.

Stifter, D.

Tong, L. M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Toulouse, J.

Villatoro, J.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Wadsworth, W.

Wadsworth, W. J.

Wiesauer, K.

Yamashita, S.

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).
[CrossRef]

Zou, W.

H. Luo, X. Li, W. Zou, X. Li, Z. Hong, and J. Chen, “Temperature-insensitive micro-displacement sensor based on locally bent microfiber taper modal interferometer,” IEEE Photon. J.4(3), 772–778 (2012).
[CrossRef]

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express5(8), 082503 (2012).
[CrossRef]

W. Long, W. Zou, X. Li, and J. Chen, “DNA optical nanofibers: preparation and characterization,” Opt. Express20(16), 18188–18193 (2012).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett.22(8), 526–528 (2010).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol.26(13), 1854–1861 (2008).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett.18(23), 2487–2489 (2006).
[CrossRef]

Appl. Phys. Express

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express5(8), 082503 (2012).
[CrossRef]

Appl. Phys. Lett.

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

IEEE Photon. J.

H. Luo, X. Li, W. Zou, X. Li, Z. Hong, and J. Chen, “Temperature-insensitive micro-displacement sensor based on locally bent microfiber taper modal interferometer,” IEEE Photon. J.4(3), 772–778 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Mizuno, P. Lenke, K. Krebber, and K. Nakamura, “Characterization of Brillouin gain spectra in polymer optical fibers fabricated by different manufacturers at 1.32 and 1.55 μm,” IEEE Photon. Technol. Lett.24(17), 1496–1498 (2012).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Two-dimensional finite element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett.18(23), 2487–2489 (2006).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett.22(8), 526–528 (2010).
[CrossRef]

IEICE Trans. Electron.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

J. Lightwave Technol.

D. Garcus, T. Gogolla, K. Krebber, and F. Schliep, “Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol.15(4), 654–662 (1997).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol.26(13), 1854–1861 (2008).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

http://www.mathworks.com/matlabcentral/fileexchange/27819-optical-fibre-toolbox

J. Chen, X. Shen, Z. Hong, and X. Li, “Nanostructure optic-fiber-based devices for optical signal processing,” in OptoeElectronics and Communications Conference (OECC2010), pp. 550–551, invited paper 8E2–1.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of characterizing SBS in silica optical fiber tapers. Distributed measurement is implemented by use of a function generator to introduce sinusoidal frequency modulation into the 1550-nm distributed feedback laser diode (DFB-LD). DMZM: dual-parallel Mach–Zehnder modulator; EDFA: erbium-doped fiber amplifier; PC: polarization controller; PS: polarization scrambler; VOA: variable optical attenuator; PD: photo detector; LIA: lock-in amplifier; DAQ: data acquisition card.

Fig. 2
Fig. 2

Schematic diagram of optical fiber taper. (a), (b) and (c) denote the microscopic images of the waist, intermediate and untapered zones, respectively.

Fig. 3
Fig. 3

Measured BGS of FUT with or without fiber taper with 5 μm waist diameter. The total length of each FUT is equal to 1m. (a) pump power = 13 dBm; (b) pump power = 23 dBm.

Fig. 4
Fig. 4

(a) Example of three dimensional plot of distributed BGS around the fiber taper with ~5 μm waist diameter (Sample 1). (b) Measured BFS distribution around the four fiber tapers; (c) the local BGS in the SMF and the waist of four fiber tapers.

Tables (1)

Tables Icon

Table 1 Parameters of Silica Optical Fiber Tapers

Metrics