Abstract

Carrier-less amplitude and phase (CAP) modulation can be a good candidate for short range optical communications for considerable computational complexity reduction and simple system structure. In this paper, a detailed investigation on the digital filters in CAP modulation system is presented. An adaptive equalizer based on cascaded multi-modulus algorithm (CMMA) is used for the demodulation at the receiver. The impact of digital filter taps on system performance is investigated through comprehensive simulations and a 10 Gb/s CAP16 modulation system is demonstrated experimentally. The BER performance for different length of fiber link is measured. Compared with back-to-back (BTB) transmissions, 2 dB and 3.5 dB receiver power penalty are observed at BER of 10−3 for 20 km and 40 km fiber link respectively. It clearly demonstrates the feasibility of the CAP16 modulation for the short range transmission systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. K. Chang, A. Chowdhury, Z. Jia, H. C. Chien, M. F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw.1(4), C35–C50 (2009).
    [CrossRef]
  2. J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for datacommunication applications,” IEEE Optical Interconnects Conference, Santa Fe, USA, MA2, May (2012).
    [CrossRef]
  3. Z. Dong, J. Yu, H. C. Chien, N. Chi, L. Chen, and G. K. Chang, “Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection,” Opt. Express19(12), 11100–11105 (2011).
    [CrossRef] [PubMed]
  4. M. F. Huang, D. Qian, and N. Cvijetic, “A novel symmetric lightwave centralized WDM-OFDM-PON architecture with OFDM-remodulated ONUs and a coherent receiver OLT,” European Conference and Exposition on Optical Communications, Geneva, Switzerland, Tu.5.C, Sep. (2011).
  5. Y. Hsueh, M. F. Huang, S. Fan, and G. K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett.23(15), 1085–1087 (2011).
    [CrossRef]
  6. G.-H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M.-H. Nguyen, and J.-J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
    [CrossRef]
  7. R. Rodes, M. Wieckowski, T. T. Pham, J. B. Jensen, J. Turkiewicz, J. Siuzdak, and I. T. Monroy, “Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON,” Opt. Express19(27), 26551–26556 (2011).
    [CrossRef] [PubMed]
  8. M. Wieckowski, J. B. Jensen, I. T. Monroy, J. Siuzdak, and J. P. Turkiewicz, “300 Mbps transmission with 4.6 bit/s/Hz spectral efficiency over 50 m PMMA POF link using RC-LED and multi-level carrierless amplitude phase modulation,” Opt. Fiber Conf. (OFC 2011), Los Angeles, USA, NTuB8., Mar. (2011).
  9. J. D. Ingham, R. V. Penty, and I. H. White, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” Opt. Fiber Conf. (OFC 2011), Los Angeles, USA, OThZ3, Mar. (2011).
  10. X. Zhou and J. Yu, “Multi-level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission,” J. Lightwave Technol.27(16), 3641–3653 (2009).
    [CrossRef]
  11. J. Gao, Y. H. Leung, and V. Sreeram, “Digital filters for carrierless amplitude and phase receivers,” IEEE International Conference on Electrical and Electronic Technology, Singapore, no. 446, August (2001).
    [CrossRef]
  12. J. Gao and Y. H. Leung, “A new adaptive equalizer for carrierless amplitude and phase (CAP) receivers,” IEEE International Symposium on Circuits and Systems, Orlando, USA, 3, 90–93, May (1999).
    [CrossRef]

2011 (3)

2009 (2)

1995 (1)

G.-H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M.-H. Nguyen, and J.-J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Chang, G. K.

Chen, L.

Chi, N.

Chien, H. C.

Chowdhury, A.

Dong, Z.

Ellinas, G.

Fan, S.

Y. Hsueh, M. F. Huang, S. Fan, and G. K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett.23(15), 1085–1087 (2011).
[CrossRef]

Gao, J.

J. Gao and Y. H. Leung, “A new adaptive equalizer for carrierless amplitude and phase (CAP) receivers,” IEEE International Symposium on Circuits and Systems, Orlando, USA, 3, 90–93, May (1999).
[CrossRef]

Harman, D. D.

G.-H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M.-H. Nguyen, and J.-J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Hsueh, Y.

Y. Hsueh, M. F. Huang, S. Fan, and G. K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett.23(15), 1085–1087 (2011).
[CrossRef]

Huang, G.

G.-H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M.-H. Nguyen, and J.-J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Huang, M. F.

Y. Hsueh, M. F. Huang, S. Fan, and G. K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett.23(15), 1085–1087 (2011).
[CrossRef]

G. K. Chang, A. Chowdhury, Z. Jia, H. C. Chien, M. F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw.1(4), C35–C50 (2009).
[CrossRef]

Im, G.-H.

G.-H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M.-H. Nguyen, and J.-J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Jensen, J. B.

Jia, Z.

Leung, Y. H.

J. Gao and Y. H. Leung, “A new adaptive equalizer for carrierless amplitude and phase (CAP) receivers,” IEEE International Symposium on Circuits and Systems, Orlando, USA, 3, 90–93, May (1999).
[CrossRef]

Mandzik, A. V.

G.-H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M.-H. Nguyen, and J.-J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Monroy, I. T.

Nguyen, M.-H.

G.-H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M.-H. Nguyen, and J.-J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Pham, T. T.

Rodes, R.

Siuzdak, J.

Turkiewicz, J.

Werner, J.-J.

G.-H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M.-H. Nguyen, and J.-J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

Wieckowski, M.

Yu, J.

Zhou, X.

IEEE J. Sel. Areas Comm. (1)

G.-H. Im, D. D. Harman, G. Huang, A. V. Mandzik, M.-H. Nguyen, and J.-J. Werner, “51.84 Mb/s 16-CAP ATM LAN standard,” IEEE J. Sel. Areas Comm.13(4), 620–632 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Hsueh, M. F. Huang, S. Fan, and G. K. Chang, “A novel lightwave centralized bidirectional hybrid access network: seamless integration of RoF with WDM-OFDM-PON,” IEEE Photon. Technol. Lett.23(15), 1085–1087 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Opt. Express (2)

Other (6)

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for datacommunication applications,” IEEE Optical Interconnects Conference, Santa Fe, USA, MA2, May (2012).
[CrossRef]

M. Wieckowski, J. B. Jensen, I. T. Monroy, J. Siuzdak, and J. P. Turkiewicz, “300 Mbps transmission with 4.6 bit/s/Hz spectral efficiency over 50 m PMMA POF link using RC-LED and multi-level carrierless amplitude phase modulation,” Opt. Fiber Conf. (OFC 2011), Los Angeles, USA, NTuB8., Mar. (2011).

J. D. Ingham, R. V. Penty, and I. H. White, “40 Gb/s carrierless amplitude and phase modulation for low-cost optical datacommunication links,” Opt. Fiber Conf. (OFC 2011), Los Angeles, USA, OThZ3, Mar. (2011).

J. Gao, Y. H. Leung, and V. Sreeram, “Digital filters for carrierless amplitude and phase receivers,” IEEE International Conference on Electrical and Electronic Technology, Singapore, no. 446, August (2001).
[CrossRef]

J. Gao and Y. H. Leung, “A new adaptive equalizer for carrierless amplitude and phase (CAP) receivers,” IEEE International Symposium on Circuits and Systems, Orlando, USA, 3, 90–93, May (1999).
[CrossRef]

M. F. Huang, D. Qian, and N. Cvijetic, “A novel symmetric lightwave centralized WDM-OFDM-PON architecture with OFDM-remodulated ONUs and a coherent receiver OLT,” European Conference and Exposition on Optical Communications, Geneva, Switzerland, Tu.5.C, Sep. (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of system structure based on CAP modulation.

Fig. 2
Fig. 2

The impulse responses of (a) in-phase and quadrature shaping filters, (b) h 11 ( t ) , (c) h 12 ( t ) , (d) h 22 ( t ) .

Fig. 3
Fig. 3

(a) Frequency response of shaping or matched filters with different ε , (b) BER performance with different ε at received power of −22 dBm, (c) BER versus received optical power with different ε when ε equals 8, (d) Dispersion-induced power penalty for different ε .

Fig. 4
Fig. 4

Experiment setup of 10 Gb/s CAP16 modulation system. ECL: external cavity laser, IM: intensity modulator, AWG: arbitrary waveform generator.

Fig. 5
Fig. 5

(a) Electrical spectrum of received CAP16 signal, (b) BER performance versus received optical power with different transmission lengths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

s( t )=a( t ) f 1 ( t )b( t ) f 2 ( t )
r i ( t )=s( t ) m 1 ( t )=( a( t ) f 1 ( t )b( t ) f 2 ( t ) ) m 1 ( t ) r q ( t )=s( t ) m 2 ( t )=( a( t ) f 1 ( t )b( t ) f 2 ( t ) ) m 2 ( t )
r i ( t )=s( t ) m 1 ( t )=a( t ) h 11 ( t )b( t ) h 12 ( t ) r q ( t )=s( t ) m 2 ( t )=a( t ) h 12 ( t )+b( t ) h 22 ( t )

Metrics