Abstract

With recent development of nanotechnology, novel devices with nanostructures arise to improve the performance of photodetectors. Here, we demonstrated that by surface decoration with gold nanoparticles on the active area, the quantum detection efficiency of a multi-pixel photon counter was increased due to surface plasmon resonance enhancement. The deposited gold nano-particles actually brought about almost the same enhancement factor for any photon-number fields. As a result, the photon-number-resolving capability of the multi-pixel photon counter was well reserved with the gold nano-particle deposition induced efficiency augment. This result provides guidance to the development of the high-efficiency photon-number-resolving detectors.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett.6(4), 683–688 (2006).
    [CrossRef] [PubMed]
  2. N. Large, J. Aizpurua, V. K. Lin, S. L. Teo, R. Marty, S. Tripathy, and A. Mlayah, “Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter,” Opt. Express19(6), 5587–5595 (2011).
    [CrossRef] [PubMed]
  3. K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  4. E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011).
    [CrossRef]
  5. Y. Chi, G. Chen, F. Jelezko, E. Wu, and H. Zeng, “Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film,” IEEE Photon. Technol. Lett.23(6), 374–376 (2011).
    [CrossRef]
  6. H. Stuart and D. Hall, “Island size effect in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
    [CrossRef]
  7. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010).
    [CrossRef] [PubMed]
  8. H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
    [CrossRef] [PubMed]
  9. P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
    [CrossRef]
  10. S. Lim, W. Mar, P. Matheu, D. Derkacs, and E. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
    [CrossRef]
  11. O. Guilatt, B. Apter, and U. Efron, “Light absorption enhancement in thin silicon film by embedded metallic nanoshells,” Opt. Lett.35(8), 1139–1141 (2010).
    [CrossRef] [PubMed]
  12. C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
    [CrossRef]
  13. S. Kim, C. Cho, B. Kim, Y. Choi, S. Park, K. Lee, and S. Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett.94(18), 183108 (2009).
    [CrossRef]
  14. R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett.10(2), 661–664 (2010).
    [CrossRef] [PubMed]
  15. A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
    [CrossRef]
  16. D. A. Kalashnikov, S. H. Tan, M. V. Chekhova, and L. A. Krivitsky, “Accessing photon bunching with a photon number resolving multi-pixel detector,” Opt. Express19(10), 9352–9363 (2011).
    [CrossRef] [PubMed]
  17. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett.5(3), 515–518 (2005).
    [CrossRef] [PubMed]
  18. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  19. S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
    [CrossRef] [PubMed]
  20. T. Atay, J. Song, and A. Nurmikko, “Stronglyinteracting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
    [CrossRef]
  21. K. Su, Q. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
    [CrossRef]
  22. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
    [CrossRef] [PubMed]
  23. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14(21), 9988–9999 (2006).
    [CrossRef] [PubMed]

2012 (2)

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
[CrossRef]

2011 (4)

N. Large, J. Aizpurua, V. K. Lin, S. L. Teo, R. Marty, S. Tripathy, and A. Mlayah, “Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter,” Opt. Express19(6), 5587–5595 (2011).
[CrossRef] [PubMed]

E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011).
[CrossRef]

Y. Chi, G. Chen, F. Jelezko, E. Wu, and H. Zeng, “Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film,” IEEE Photon. Technol. Lett.23(6), 374–376 (2011).
[CrossRef]

D. A. Kalashnikov, S. H. Tan, M. V. Chekhova, and L. A. Krivitsky, “Accessing photon bunching with a photon number resolving multi-pixel detector,” Opt. Express19(10), 9352–9363 (2011).
[CrossRef] [PubMed]

2010 (3)

O. Guilatt, B. Apter, and U. Efron, “Light absorption enhancement in thin silicon film by embedded metallic nanoshells,” Opt. Lett.35(8), 1139–1141 (2010).
[CrossRef] [PubMed]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010).
[CrossRef] [PubMed]

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett.10(2), 661–664 (2010).
[CrossRef] [PubMed]

2009 (1)

S. Kim, C. Cho, B. Kim, Y. Choi, S. Park, K. Lee, and S. Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett.94(18), 183108 (2009).
[CrossRef]

2008 (4)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

2007 (1)

S. Lim, W. Mar, P. Matheu, D. Derkacs, and E. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

2006 (3)

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett.6(4), 683–688 (2006).
[CrossRef] [PubMed]

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14(21), 9988–9999 (2006).
[CrossRef] [PubMed]

2005 (1)

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett.5(3), 515–518 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Atay, J. Song, and A. Nurmikko, “Stronglyinteracting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

2003 (2)

K. Su, Q. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

1998 (1)

H. Stuart and D. Hall, “Island size effect in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

Aizpurua, J.

Apter, B.

Atay, T.

T. Atay, J. Song, and A. Nurmikko, “Stronglyinteracting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

Berciaud, S.

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett.5(3), 515–518 (2005).
[CrossRef] [PubMed]

Brandl, D. W.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Bryant, G. W.

Catchpole, K. R.

Chekhova, M. V.

Chen, G.

Y. Chi, G. Chen, F. Jelezko, E. Wu, and H. Zeng, “Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film,” IEEE Photon. Technol. Lett.23(6), 374–376 (2011).
[CrossRef]

Cheng, I.

C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
[CrossRef]

Chi, Y.

Y. Chi, G. Chen, F. Jelezko, E. Wu, and H. Zeng, “Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film,” IEEE Photon. Technol. Lett.23(6), 374–376 (2011).
[CrossRef]

E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011).
[CrossRef]

Cho, C.

S. Kim, C. Cho, B. Kim, Y. Choi, S. Park, K. Lee, and S. Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett.94(18), 183108 (2009).
[CrossRef]

Choi, Y.

S. Kim, C. Cho, B. Kim, Y. Choi, S. Park, K. Lee, and S. Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett.94(18), 183108 (2009).
[CrossRef]

Cognet, L.

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett.5(3), 515–518 (2005).
[CrossRef] [PubMed]

Coronado, E.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Derkacs, D.

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

S. Lim, W. Mar, P. Matheu, D. Derkacs, and E. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Dolgoshein, B.

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

Dorenbos, S. N.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett.10(2), 661–664 (2010).
[CrossRef] [PubMed]

Efron, U.

García De Abajo, F. J.

Grady, N. K.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

Guilatt, O.

Hafner, J. H.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett.6(4), 683–688 (2006).
[CrossRef] [PubMed]

Halas, N. J.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

Hall, D.

H. Stuart and D. Hall, “Island size effect in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

Heeres, R. W.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett.10(2), 661–664 (2010).
[CrossRef] [PubMed]

Hernandez, L. I.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Ho, C.

C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
[CrossRef]

Hose, J.

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

Im, S.

S. Kim, C. Cho, B. Kim, Y. Choi, S. Park, K. Lee, and S. Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett.94(18), 183108 (2009).
[CrossRef]

Jelezko, F.

Y. Chi, G. Chen, F. Jelezko, E. Wu, and H. Zeng, “Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film,” IEEE Photon. Technol. Lett.23(6), 374–376 (2011).
[CrossRef]

Kalashnikov, D. A.

Kelly, K.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kim, B.

S. Kim, C. Cho, B. Kim, Y. Choi, S. Park, K. Lee, and S. Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett.94(18), 183108 (2009).
[CrossRef]

Kim, S.

S. Kim, C. Cho, B. Kim, Y. Choi, S. Park, K. Lee, and S. Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett.94(18), 183108 (2009).
[CrossRef]

Klemin, S.

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

Koene, B.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett.10(2), 661–664 (2010).
[CrossRef] [PubMed]

Konstantatos, G.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010).
[CrossRef] [PubMed]

Kouwenhoven, L. P.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett.10(2), 661–664 (2010).
[CrossRef] [PubMed]

Krivitsky, L. A.

Kuan, C.

C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
[CrossRef]

Lal, S.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Large, N.

Lassiter, J. B.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Lee, K.

S. Kim, C. Cho, B. Kim, Y. Choi, S. Park, K. Lee, and S. Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett.94(18), 183108 (2009).
[CrossRef]

Lee, S.

C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
[CrossRef]

Liao, H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett.6(4), 683–688 (2006).
[CrossRef] [PubMed]

Lim, S.

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

S. Lim, W. Mar, P. Matheu, D. Derkacs, and E. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Lin, V. K.

Lorenz, E.

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

Lounis, B.

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett.5(3), 515–518 (2005).
[CrossRef] [PubMed]

Lutz, G.

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

Mar, W.

S. Lim, W. Mar, P. Matheu, D. Derkacs, and E. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Marty, R.

Matheu, P.

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

S. Lim, W. Mar, P. Matheu, D. Derkacs, and E. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

McPheeters, C.

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

Mirin, N.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

Mirzoyan, R.

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

Misawa, H.

E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011).
[CrossRef]

Mlayah, A.

Mock, J. J.

K. Su, Q. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Nehl, C. L.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett.6(4), 683–688 (2006).
[CrossRef] [PubMed]

Nordlander, P.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Nurmikko, A.

T. Atay, J. Song, and A. Nurmikko, “Stronglyinteracting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

Otte, A.

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

Park, S.

S. Kim, C. Cho, B. Kim, Y. Choi, S. Park, K. Lee, and S. Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett.94(18), 183108 (2009).
[CrossRef]

Polman, A.

Popova, E.

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

Pu, M.

C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
[CrossRef]

Richter, R.

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

Romero, I.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14(21), 9988–9999 (2006).
[CrossRef] [PubMed]

Santbergen, R.

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Sargent, E. H.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010).
[CrossRef] [PubMed]

Schatz, G.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Schultz, S.

K. Su, Q. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Smets, A. H.

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Smith, D. R.

K. Su, Q. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Solomon, G. S.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett.10(2), 661–664 (2010).
[CrossRef] [PubMed]

Song, J.

T. Atay, J. Song, and A. Nurmikko, “Stronglyinteracting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

Strüder, L.

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

Stuart, H.

H. Stuart and D. Hall, “Island size effect in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

Su, K.

K. Su, Q. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Su, V.

C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
[CrossRef]

Sundararajan, S. P.

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

Tamarat, P.

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett.5(3), 515–518 (2005).
[CrossRef] [PubMed]

Tan, H.

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Tan, S. H.

Teo, S. L.

Teshima, M.

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

Tripathy, S.

Ueno, K.

E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011).
[CrossRef]

Wei, Q.

K. Su, Q. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Wu, B.

E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011).
[CrossRef]

Wu, E.

E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011).
[CrossRef]

Y. Chi, G. Chen, F. Jelezko, E. Wu, and H. Zeng, “Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film,” IEEE Photon. Technol. Lett.23(6), 374–376 (2011).
[CrossRef]

Xia, K.

E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011).
[CrossRef]

Yang, C.

C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
[CrossRef]

Yang, P.

C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
[CrossRef]

Yeh, D.

C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
[CrossRef]

Yokota, Y.

E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011).
[CrossRef]

Yu, E.

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

S. Lim, W. Mar, P. Matheu, D. Derkacs, and E. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

Zeman, M.

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Zeng, H.

Y. Chi, G. Chen, F. Jelezko, E. Wu, and H. Zeng, “Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film,” IEEE Photon. Technol. Lett.23(6), 374–376 (2011).
[CrossRef]

E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011).
[CrossRef]

Zhang, X.

K. Su, Q. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Zhao, L.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Zwiller, V.

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett.10(2), 661–664 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

H. Stuart and D. Hall, “Island size effect in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998).
[CrossRef]

P. Matheu, S. Lim, D. Derkacs, C. McPheeters, and E. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008).
[CrossRef]

S. Kim, C. Cho, B. Kim, Y. Choi, S. Park, K. Lee, and S. Im, “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett.94(18), 183108 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Chi, G. Chen, F. Jelezko, E. Wu, and H. Zeng, “Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film,” IEEE Photon. Technol. Lett.23(6), 374–376 (2011).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

A. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. Richter, L. Strüder, and M. Teshima, “Prospects of using silicon photomultipliers for the astroparticle physics experiments Euso and Magic,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006).
[CrossRef]

J. Appl. Phys. (2)

S. Lim, W. Mar, P. Matheu, D. Derkacs, and E. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007).
[CrossRef]

C. Ho, D. Yeh, V. Su, C. Yang, P. Yang, M. Pu, C. Kuan, I. Cheng, and S. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112(2), 023113 (2012).
[CrossRef]

J. Lumin. (1)

E. Wu, Y. Chi, B. Wu, K. Xia, Y. Yokota, K. Ueno, H. Misawa, and H. Zeng, “Spatial polarization sensitivity of single Au bowtie nanostructures,” J. Lumin.131(9), 1971–1974 (2011).
[CrossRef]

J. Phys. Chem. B (1)

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Nano Lett. (8)

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett.6(4), 683–688 (2006).
[CrossRef] [PubMed]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett.10(2), 661–664 (2010).
[CrossRef] [PubMed]

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett.5(3), 515–518 (2005).
[CrossRef] [PubMed]

S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, “Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode,” Nano Lett.8(2), 624–630 (2008).
[CrossRef] [PubMed]

T. Atay, J. Song, and A. Nurmikko, “Stronglyinteracting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004).
[CrossRef]

K. Su, Q. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Topographical images of a single Au nano-particle. (b) Extinction spectrum of Au nanoparticles with diameter of 200 nm in water solution.

Fig. 2
Fig. 2

Topographical images the MPPC surface with different Au nano-particle densities of approximately 18 (a), 36 (b), and 72 (c) particles per 10 × 10 μm2.

Fig. 3
Fig. 3

(a) Experimental setup of quantum efficiency measurement for the MPPC with Au nano-particle deposition. AMP, amplifier; OSC, oscilloscope. (b) Counting rate of the MPPC with no Au nanoparticles (line A) and about 18 (line B), 36 (line C), and 72 (line D) Au nanoparticles per 10 × 10 μm2, respectively. (c) Photon detection efficiency as a function of the Au nanoparticle density. (d) Enhancement factor of the photon detection efficiency as a function of the incident laser wavelength.

Fig. 4
Fig. 4

Histogram of the MPPC peak output voltages (a) with Au nanoparticle density of ~36 particles per 10 × 10 μm2 (a), without Au nano-particles (b). Red circle represents the data measured in the experiment and the blue line represents the fitting data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g= η Au / η b ,
P(V)= n=0 p(μ,n)ρ(n,V) ,

Metrics