Abstract

In order to improve the spectral efficiency of coherent optical communication systems, it has recently been proposed to make use of the orthogonal frequency-division multiplexing offset quadrature amplitude modulation (OFDM-OQAM). Multiple optical channels spaced in the frequency domain by the symbol rate can be transmitted orthogonally, even if each channel overlaps significantly in frequency with its two adjacent channels. The solutions proposed until now in the literature unfortunately only address a single polarization communication, and therefore do not benefit from the capacity gain reached when two polarizations are used to transmit independent information signals. The aim of the present paper is to propose a receiver architecture that can decouple the two polarizations. We build an equalizer per channel at twice the symbol rate and optimize it based on the minimum mean square error (MMSE) criterion. We demonstrate the efficiency of the resulting system compared to the Nyquist wavelength-division multiplexing (N-WDM) system both in terms of performance and complexity. We also assess the system sensitivity to transmit synchronization errors and show that system can even work under significant synchronization errors.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Tsukamoto, D. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Coherent demodulation of 40Gb/s polarization-multiplexed QPSK signals with 16GHz spacing after 200-km transmission,” in Proc. OFC2005 (Anaheim, U.S.A., 2005).
  2. G. Charlet, “Coherent detection associated with digital signal processing for fiber optics communication,” C. R. Phys.9, 1012–1030 (2008).
    [CrossRef]
  3. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
    [CrossRef]
  4. R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).
  5. J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, F. Horlin, P. Emplit, and S. Bigo, “Design rules for pulse shaping in PDM-QPSK and PDM-16QAM Nyquist-WDM coherent optical transmission systems,” in Proc. ECOC2012 (Amsterdam, The Netherlands, 2012).
  6. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
    [CrossRef]
  7. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?” J. Opt. Netw.7(3), 234–255 (2008).
    [CrossRef]
  8. D. J. F. Barros and J. M. Kahn, “Optimized dispersion compensation using orthogonal frequency-division multiplexing,” J. Lightwave Technol.26(16), 2889–2898 (2008).
    [CrossRef]
  9. F. Horlin, F. Quitin, J. Fickers, and P. Emplit, “Polarization division multiplexing for SC-FDE communications over dispersive optical fibers,” in Proc. IEEE Int. Conf. on Commun. (Cape Town, South Africa, 2010).
  10. S. Chandrasekhar and X. Liu, “Terabit superchannels for high spectral efficiency transmission,” in Proc. ECOC2010 (Torino, Italy, 2010).
  11. T. Healy, F. G. Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express15(6), 2981–2986 (2007).
    [CrossRef] [PubMed]
  12. Y. Ma, Y. Q. T. Yan, C. Simin, and W. Shieh, “1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access,” in Proc. OFC2009 (Los Angeles, U.S.A., 2009).
  13. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol.27(16), 3705–3713 (2009).
    [CrossRef]
  14. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express17(24), 21350–21361 (2009).
    [CrossRef] [PubMed]
  15. B. L. Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency division multiplex,” Proc. IEEE83(6), 982–996 (1995).
    [CrossRef]
  16. C. Siclet and P. Siohan, “Design of BFDM/OQAM systems based on biorthogonal modulated filter banks,” in Proc. IEEE Globecom (San Fransisco, U.S.A., 2000).
  17. D. S. Waldhauser and J. A. Nossek, “MMSE equalization for bandwidth efficient multicarrier systems,” in Proc. IEEE Int. Symp. on Circuits and Systems (Island of Kos, Greece, 2006).
  18. D. S. Waldhauser, L. G. Baltar, and J. A. Nossek, “MMSE subcarrier equalization for filter bank based multicarrier systems,” in Proc. IEEE Int. Workshop on Signal Process. Advances in Wireless Commun. (Recife, Brazil, 2008).
  19. M. Najar, “Deliverable 4.2 - MIMO techniques and beamforming,” Tech. rep., FP7-ICT PHYDYAS - PHYsical layer for DYnamic AccesS and cognitive radio (2010).
  20. A. Ikhlef and J. Louveaux, “Per subchannel equalization for MIMO FBMC/OQAM systems,” in Proc. IEEE Pacific Rim Conf. on Commun., Computers and Signal Process. (Victoria, Canada, 2009).
  21. E. Kofidis and A. A. Rontogiannis, “Adaptive BLAST decision-feedback equalizer for MIMO-FBMC/OQAM systems,” in Proc. IEEE Personal, Indoor and Mobile Radio Commun. (Istanbul, Turkey, 2010).
    [CrossRef]
  22. J. Zhao and A. D. Ellis, “Offset-QAM based coherent WDM for spectral efficiency enhancement,” Opt. Express19(15), 14617–14631 (2011).
  23. S. Randel, A. Sierra, X. Liu, S. Chandrasekhar, and P. J. Winzer, “Study of multicarrier offset-QAM for spectrally efficient coherent optical communications,” in Proc. ECOC2011 (Geneva, Switzeland, 2011).
  24. A. Duel-Hallen, “Equalizers for multiple input/multiple output channels and PAM systems with cyclostationary input sequences,” IEEE J. Sel. Areas Commun.10(3), 630–639 (1992).
    [CrossRef]
  25. A. Klein, G. K. Kaleh, and P. W. Baier, “Zero forcing and minimum mean-square-error equalization for multiuser detection in code-division multiple-access channels,” IEEE Trans. Veh. Technol.45(2), 276–287 (1996).
    [CrossRef]

2011 (1)

2010 (1)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

2009 (2)

2008 (3)

2007 (1)

2006 (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

1996 (1)

A. Klein, G. K. Kaleh, and P. W. Baier, “Zero forcing and minimum mean-square-error equalization for multiuser detection in code-division multiple-access channels,” IEEE Trans. Veh. Technol.45(2), 276–287 (1996).
[CrossRef]

1995 (1)

B. L. Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency division multiplex,” Proc. IEEE83(6), 982–996 (1995).
[CrossRef]

1992 (1)

A. Duel-Hallen, “Equalizers for multiple input/multiple output channels and PAM systems with cyclostationary input sequences,” IEEE J. Sel. Areas Commun.10(3), 630–639 (1992).
[CrossRef]

Alard, M.

B. L. Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency division multiplex,” Proc. IEEE83(6), 982–996 (1995).
[CrossRef]

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

Baier, P. W.

A. Klein, G. K. Kaleh, and P. W. Baier, “Zero forcing and minimum mean-square-error equalization for multiuser detection in code-division multiple-access channels,” IEEE Trans. Veh. Technol.45(2), 276–287 (1996).
[CrossRef]

Baltar, L. G.

D. S. Waldhauser, L. G. Baltar, and J. A. Nossek, “MMSE subcarrier equalization for filter bank based multicarrier systems,” in Proc. IEEE Int. Workshop on Signal Process. Advances in Wireless Commun. (Recife, Brazil, 2008).

Barros, D. J. F.

Berrou, C.

B. L. Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency division multiplex,” Proc. IEEE83(6), 982–996 (1995).
[CrossRef]

Bigo, S.

J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, F. Horlin, P. Emplit, and S. Bigo, “Design rules for pulse shaping in PDM-QPSK and PDM-16QAM Nyquist-WDM coherent optical transmission systems,” in Proc. ECOC2012 (Amsterdam, The Netherlands, 2012).

Bosco, G.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).

Bull, J. D.

Carena, A.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).

Chandrasekhar, S.

S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express17(24), 21350–21361 (2009).
[CrossRef] [PubMed]

S. Randel, A. Sierra, X. Liu, S. Chandrasekhar, and P. J. Winzer, “Study of multicarrier offset-QAM for spectrally efficient coherent optical communications,” in Proc. ECOC2011 (Geneva, Switzeland, 2011).

S. Chandrasekhar and X. Liu, “Terabit superchannels for high spectral efficiency transmission,” in Proc. ECOC2010 (Torino, Italy, 2010).

Charlet, G.

G. Charlet, “Coherent detection associated with digital signal processing for fiber optics communication,” C. R. Phys.9, 1012–1030 (2008).
[CrossRef]

J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, F. Horlin, P. Emplit, and S. Bigo, “Design rules for pulse shaping in PDM-QPSK and PDM-16QAM Nyquist-WDM coherent optical transmission systems,” in Proc. ECOC2012 (Amsterdam, The Netherlands, 2012).

Cigliutti, R.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).

Curri, V.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).

Duel-Hallen, A.

A. Duel-Hallen, “Equalizers for multiple input/multiple output channels and PAM systems with cyclostationary input sequences,” IEEE J. Sel. Areas Commun.10(3), 630–639 (1992).
[CrossRef]

Ellis, A. D.

Emplit, P.

F. Horlin, F. Quitin, J. Fickers, and P. Emplit, “Polarization division multiplexing for SC-FDE communications over dispersive optical fibers,” in Proc. IEEE Int. Conf. on Commun. (Cape Town, South Africa, 2010).

J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, F. Horlin, P. Emplit, and S. Bigo, “Design rules for pulse shaping in PDM-QPSK and PDM-16QAM Nyquist-WDM coherent optical transmission systems,” in Proc. ECOC2012 (Amsterdam, The Netherlands, 2012).

Fickers, J.

J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, F. Horlin, P. Emplit, and S. Bigo, “Design rules for pulse shaping in PDM-QPSK and PDM-16QAM Nyquist-WDM coherent optical transmission systems,” in Proc. ECOC2012 (Amsterdam, The Netherlands, 2012).

F. Horlin, F. Quitin, J. Fickers, and P. Emplit, “Polarization division multiplexing for SC-FDE communications over dispersive optical fibers,” in Proc. IEEE Int. Conf. on Commun. (Cape Town, South Africa, 2010).

Floch, B. L.

B. L. Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency division multiplex,” Proc. IEEE83(6), 982–996 (1995).
[CrossRef]

Forghieri, F.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).

Ghazisaeidi, A.

J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, F. Horlin, P. Emplit, and S. Bigo, “Design rules for pulse shaping in PDM-QPSK and PDM-16QAM Nyquist-WDM coherent optical transmission systems,” in Proc. ECOC2012 (Amsterdam, The Netherlands, 2012).

Gunning, F. G.

Healy, T.

Horlin, F.

F. Horlin, F. Quitin, J. Fickers, and P. Emplit, “Polarization division multiplexing for SC-FDE communications over dispersive optical fibers,” in Proc. IEEE Int. Conf. on Commun. (Cape Town, South Africa, 2010).

J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, F. Horlin, P. Emplit, and S. Bigo, “Design rules for pulse shaping in PDM-QPSK and PDM-16QAM Nyquist-WDM coherent optical transmission systems,” in Proc. ECOC2012 (Amsterdam, The Netherlands, 2012).

Ikhlef, A.

A. Ikhlef and J. Louveaux, “Per subchannel equalization for MIMO FBMC/OQAM systems,” in Proc. IEEE Pacific Rim Conf. on Commun., Computers and Signal Process. (Victoria, Canada, 2009).

Ishihara, K.

Kahn, J. M.

Kaleh, G. K.

A. Klein, G. K. Kaleh, and P. W. Baier, “Zero forcing and minimum mean-square-error equalization for multiuser detection in code-division multiple-access channels,” IEEE Trans. Veh. Technol.45(2), 276–287 (1996).
[CrossRef]

Katoh, K.

S. Tsukamoto, D. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Coherent demodulation of 40Gb/s polarization-multiplexed QPSK signals with 16GHz spacing after 200-km transmission,” in Proc. OFC2005 (Anaheim, U.S.A., 2005).

Kikuchi, K.

S. Tsukamoto, D. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Coherent demodulation of 40Gb/s polarization-multiplexed QPSK signals with 16GHz spacing after 200-km transmission,” in Proc. OFC2005 (Anaheim, U.S.A., 2005).

Klein, A.

A. Klein, G. K. Kaleh, and P. W. Baier, “Zero forcing and minimum mean-square-error equalization for multiuser detection in code-division multiple-access channels,” IEEE Trans. Veh. Technol.45(2), 276–287 (1996).
[CrossRef]

Kobayashi, T.

Kofidis, E.

E. Kofidis and A. A. Rontogiannis, “Adaptive BLAST decision-feedback equalizer for MIMO-FBMC/OQAM systems,” in Proc. IEEE Personal, Indoor and Mobile Radio Commun. (Istanbul, Turkey, 2010).
[CrossRef]

Kudo, R.

Liu, X.

S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express17(24), 21350–21361 (2009).
[CrossRef] [PubMed]

S. Chandrasekhar and X. Liu, “Terabit superchannels for high spectral efficiency transmission,” in Proc. ECOC2010 (Torino, Italy, 2010).

S. Randel, A. Sierra, X. Liu, S. Chandrasekhar, and P. J. Winzer, “Study of multicarrier offset-QAM for spectrally efficient coherent optical communications,” in Proc. ECOC2011 (Geneva, Switzeland, 2011).

Louveaux, J.

A. Ikhlef and J. Louveaux, “Per subchannel equalization for MIMO FBMC/OQAM systems,” in Proc. IEEE Pacific Rim Conf. on Commun., Computers and Signal Process. (Victoria, Canada, 2009).

Ly-Gagnon, D.

S. Tsukamoto, D. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Coherent demodulation of 40Gb/s polarization-multiplexed QPSK signals with 16GHz spacing after 200-km transmission,” in Proc. OFC2005 (Anaheim, U.S.A., 2005).

Ma, Y.

W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?” J. Opt. Netw.7(3), 234–255 (2008).
[CrossRef]

Y. Ma, Y. Q. T. Yan, C. Simin, and W. Shieh, “1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access,” in Proc. OFC2009 (Los Angeles, U.S.A., 2009).

Masuda, H.

Miyamoto, Y.

Najar, M.

M. Najar, “Deliverable 4.2 - MIMO techniques and beamforming,” Tech. rep., FP7-ICT PHYDYAS - PHYsical layer for DYnamic AccesS and cognitive radio (2010).

Nespola, A.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).

Nossek, J. A.

D. S. Waldhauser, L. G. Baltar, and J. A. Nossek, “MMSE subcarrier equalization for filter bank based multicarrier systems,” in Proc. IEEE Int. Workshop on Signal Process. Advances in Wireless Commun. (Recife, Brazil, 2008).

D. S. Waldhauser and J. A. Nossek, “MMSE equalization for bandwidth efficient multicarrier systems,” in Proc. IEEE Int. Symp. on Circuits and Systems (Island of Kos, Greece, 2006).

Poggiolini, P.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).

Quitin, F.

F. Horlin, F. Quitin, J. Fickers, and P. Emplit, “Polarization division multiplexing for SC-FDE communications over dispersive optical fibers,” in Proc. IEEE Int. Conf. on Commun. (Cape Town, South Africa, 2010).

Randel, S.

S. Randel, A. Sierra, X. Liu, S. Chandrasekhar, and P. J. Winzer, “Study of multicarrier offset-QAM for spectrally efficient coherent optical communications,” in Proc. ECOC2011 (Geneva, Switzeland, 2011).

Rontogiannis, A. A.

E. Kofidis and A. A. Rontogiannis, “Adaptive BLAST decision-feedback equalizer for MIMO-FBMC/OQAM systems,” in Proc. IEEE Personal, Indoor and Mobile Radio Commun. (Istanbul, Turkey, 2010).
[CrossRef]

Salsi, M.

J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, F. Horlin, P. Emplit, and S. Bigo, “Design rules for pulse shaping in PDM-QPSK and PDM-16QAM Nyquist-WDM coherent optical transmission systems,” in Proc. ECOC2012 (Amsterdam, The Netherlands, 2012).

Sano, A.

Sasaki, T.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).

Shieh, W.

W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?” J. Opt. Netw.7(3), 234–255 (2008).
[CrossRef]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

Y. Ma, Y. Q. T. Yan, C. Simin, and W. Shieh, “1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access,” in Proc. OFC2009 (Los Angeles, U.S.A., 2009).

Siclet, C.

C. Siclet and P. Siohan, “Design of BFDM/OQAM systems based on biorthogonal modulated filter banks,” in Proc. IEEE Globecom (San Fransisco, U.S.A., 2000).

Sierra, A.

S. Randel, A. Sierra, X. Liu, S. Chandrasekhar, and P. J. Winzer, “Study of multicarrier offset-QAM for spectrally efficient coherent optical communications,” in Proc. ECOC2011 (Geneva, Switzeland, 2011).

Simin, C.

Y. Ma, Y. Q. T. Yan, C. Simin, and W. Shieh, “1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access,” in Proc. OFC2009 (Los Angeles, U.S.A., 2009).

Siohan, P.

C. Siclet and P. Siohan, “Design of BFDM/OQAM systems based on biorthogonal modulated filter banks,” in Proc. IEEE Globecom (San Fransisco, U.S.A., 2000).

Takatori, Y.

Tsukamoto, S.

S. Tsukamoto, D. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Coherent demodulation of 40Gb/s polarization-multiplexed QPSK signals with 16GHz spacing after 200-km transmission,” in Proc. OFC2005 (Anaheim, U.S.A., 2005).

Waldhauser, D. S.

D. S. Waldhauser and J. A. Nossek, “MMSE equalization for bandwidth efficient multicarrier systems,” in Proc. IEEE Int. Symp. on Circuits and Systems (Island of Kos, Greece, 2006).

D. S. Waldhauser, L. G. Baltar, and J. A. Nossek, “MMSE subcarrier equalization for filter bank based multicarrier systems,” in Proc. IEEE Int. Workshop on Signal Process. Advances in Wireless Commun. (Recife, Brazil, 2008).

Winzer, P. J.

S. Randel, A. Sierra, X. Liu, S. Chandrasekhar, and P. J. Winzer, “Study of multicarrier offset-QAM for spectrally efficient coherent optical communications,” in Proc. ECOC2011 (Geneva, Switzeland, 2011).

Yamada, E.

Yamamoto, Y.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).

Yamazaki, E.

Yan, Y. Q. T.

Y. Ma, Y. Q. T. Yan, C. Simin, and W. Shieh, “1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access,” in Proc. OFC2009 (Los Angeles, U.S.A., 2009).

Yang, Q.

Yi, X.

Yoshida, E.

Zeolla, D.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).

Zhao, J.

C. R. Phys. (1)

G. Charlet, “Coherent detection associated with digital signal processing for fiber optics communication,” C. R. Phys.9, 1012–1030 (2008).
[CrossRef]

Electron. Lett. (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

A. Duel-Hallen, “Equalizers for multiple input/multiple output channels and PAM systems with cyclostationary input sequences,” IEEE J. Sel. Areas Commun.10(3), 630–639 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

IEEE Trans. Veh. Technol. (1)

A. Klein, G. K. Kaleh, and P. W. Baier, “Zero forcing and minimum mean-square-error equalization for multiuser detection in code-division multiple-access channels,” IEEE Trans. Veh. Technol.45(2), 276–287 (1996).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Netw. (1)

Opt. Express (3)

Proc. IEEE (1)

B. L. Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency division multiplex,” Proc. IEEE83(6), 982–996 (1995).
[CrossRef]

Other (13)

C. Siclet and P. Siohan, “Design of BFDM/OQAM systems based on biorthogonal modulated filter banks,” in Proc. IEEE Globecom (San Fransisco, U.S.A., 2000).

D. S. Waldhauser and J. A. Nossek, “MMSE equalization for bandwidth efficient multicarrier systems,” in Proc. IEEE Int. Symp. on Circuits and Systems (Island of Kos, Greece, 2006).

D. S. Waldhauser, L. G. Baltar, and J. A. Nossek, “MMSE subcarrier equalization for filter bank based multicarrier systems,” in Proc. IEEE Int. Workshop on Signal Process. Advances in Wireless Commun. (Recife, Brazil, 2008).

M. Najar, “Deliverable 4.2 - MIMO techniques and beamforming,” Tech. rep., FP7-ICT PHYDYAS - PHYsical layer for DYnamic AccesS and cognitive radio (2010).

A. Ikhlef and J. Louveaux, “Per subchannel equalization for MIMO FBMC/OQAM systems,” in Proc. IEEE Pacific Rim Conf. on Commun., Computers and Signal Process. (Victoria, Canada, 2009).

E. Kofidis and A. A. Rontogiannis, “Adaptive BLAST decision-feedback equalizer for MIMO-FBMC/OQAM systems,” in Proc. IEEE Personal, Indoor and Mobile Radio Commun. (Istanbul, Turkey, 2010).
[CrossRef]

F. Horlin, F. Quitin, J. Fickers, and P. Emplit, “Polarization division multiplexing for SC-FDE communications over dispersive optical fibers,” in Proc. IEEE Int. Conf. on Commun. (Cape Town, South Africa, 2010).

S. Chandrasekhar and X. Liu, “Terabit superchannels for high spectral efficiency transmission,” in Proc. ECOC2010 (Torino, Italy, 2010).

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “Ultra-long-haul transmission of 16×112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05×(symbol-rate) frequency spacing,” in Proc. OFC2012 (Los Angeles, U.S.A., 2012).

J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, F. Horlin, P. Emplit, and S. Bigo, “Design rules for pulse shaping in PDM-QPSK and PDM-16QAM Nyquist-WDM coherent optical transmission systems,” in Proc. ECOC2012 (Amsterdam, The Netherlands, 2012).

S. Randel, A. Sierra, X. Liu, S. Chandrasekhar, and P. J. Winzer, “Study of multicarrier offset-QAM for spectrally efficient coherent optical communications,” in Proc. ECOC2011 (Geneva, Switzeland, 2011).

Y. Ma, Y. Q. T. Yan, C. Simin, and W. Shieh, “1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access,” in Proc. OFC2009 (Los Angeles, U.S.A., 2009).

S. Tsukamoto, D. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Coherent demodulation of 40Gb/s polarization-multiplexed QPSK signals with 16GHz spacing after 200-km transmission,” in Proc. OFC2005 (Anaheim, U.S.A., 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

OQAM-FBMC system model for subchannel k.

Fig. 2
Fig. 2

Comparison of performance between the QAM and OQAM-FBMC systems for a varying SNR at the input of the receiver. The symbol rate, channel bandwidth and channel spacing are all equal to 30 Gsymb/s or GHz.

Fig. 3
Fig. 3

Performance of the OFDM-OQAM system as a function of the equalizer memory length for a varying symbol rate. The channel bandwidth and channel spacing are varying according to the symbol rate. The received SNR is fixed to 20 dB.

Fig. 4
Fig. 4

Comparison of performance between the N-WDM and OQAM systems for a varying pulse length. The received SNR is fixed to 20 dB.

Fig. 5
Fig. 5

Comparison of performance between the N-WDM and OQAM systems for a varying subchannel spacing (normalized to the symbol rate equal to 30 Gsymb/s). The received SNR is fixed to 20 dB.

Fig. 6
Fig. 6

Comparison of performance between the N-WDM and OQAM systems for a pulse length equal to 8 or 20 (long pulse filter).

Fig. 7
Fig. 7

Impact of a time synchronization error on the OQAM system bit error rate.

Fig. 8
Fig. 8

Impact of a phase synchronization error on the OQAM system bit error rate.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

r ( n R , k ) , ρ R [ n ] = r ( n R , k ) R [ 2 n + ρ ]
r ( n R , k ) , ρ I [ n ] = r ( n R , k ) I [ 2 n + ρ ]
r ( n R , k ) , ρ R [ n ] = n T = 1 2 i = k 1 k + 1 g ( n T , i ) , ( n R , k ) , ρ R , R [ n ] s ( n T , i ) R [ n ] + n T = 1 2 i = k 1 k + 1 g ( n T , i ) , ( n R , k ) , ρ I , R [ n ] s ( n T , i ) I [ n ] + v ( n R , k ) , ρ R [ n ]
r ( n R , k ) , ρ I [ n ] = n T = 1 2 i = k 1 k + 1 g ( n T , i ) , ( n R , k ) , ρ R , I [ n ] s ( n T , i ) R [ n ] + n T = 1 2 i = k 1 k + 1 g ( n T , i ) , ( n R , k ) , ρ I , I [ n ] s ( n T , i ) I [ n ] + v ( n R , k ) , ρ I [ n ]
g ( n T , i ) , ( n R , k ) , ρ R , R [ n ] : = { p i R [ m ] h n T , n R [ m ] q k R [ m ] } | n = m M + ρ M 2
g ( n T , i ) , ( n R , k ) , ρ I , R [ n ] : = { p i I [ m ] h n T , n R [ m ] q k R [ m ] } | n = m M + ρ M 2
g ( n T , i ) , ( n R , k ) , ρ R , I [ n ] : = { p i R [ m ] h n T , n R [ m ] q k I [ m ] } | n = m M + ρ M 2
g ( n T , i ) , ( n R , k ) , ρ I , I [ n ] : = { p i I [ m ] h n T , n R [ m ] q k I [ m ] } | n = m M + ρ M 2
p i R [ n ] : = ( j ) i u [ n ] exp ( j 2 π in M )
p i I [ n ] : = ( 1 ) i ( j ) i + 1 u [ n M 2 ] exp ( j 2 π in M )
q i R [ n ] : = ( j ) i u * [ n ] exp ( j 2 π in M )
q i I [ n ] : = ( 1 ) i ( j ) i u * [ n M 2 ] exp ( j 2 π in M ) .
s i [ n ] : = [ ( s ( 1 , i ) [ n ] ) T | ( s ( 2 , i ) [ n ] ) T ] T
s ( n T , i ) [ n ] : = [ s ( n T , i ) R [ n ] s ( n T , i ) I [ n ] ] T ,
r k [ n ] : [ ( r ( 1 , k ) [ n ] ) T | ( r ( 2 , k ) [ n ] ) T ] T
v k [ n ] : = [ ( v ( 1 , k ) [ n ] ) T | ( v ( 2 , k ) [ n ] ) T ] T
r ( n R , k ) [ n ] : = [ r ( n R , k ) , 0 R [ n ] r ( n R , k ) , 1 R [ n ] r ( n R , k ) , 0 I [ n ] r ( n R , k ) , 1 I [ n ] ] T
v ( n R , k ) [ n ] : = [ v ( n R , k ) , 0 R [ n ] v ( n R , k ) , 1 R [ n ] v ( n R , k ) , 0 I [ n ] v ( n R , k ) , 1 I [ n ] ] T ,
G i , k [ n ] : = [ G ( 1 , i ) , ( 1 , k ) [ n ] G ( 2 , i ) , ( 1 , k ) [ n ] G ( 1 , i ) , ( 2 , k ) [ n ] G ( 2 , i ) , ( 2 , k ) [ n ] ]
G ( n T , i ) , ( n R , k ) [ n ] : = [ g ( n T , i ) , ( n R , k ) , 0 R , R [ n ] g ( n T , i ) , ( n R , k ) , 0 I , R [ n ] g ( n T , i ) , ( n R , k ) , 1 R , R [ n ] g ( n T , i ) , ( n R , k ) , 1 I , R [ n ] g ( n T , i ) , ( n R , k ) , 0 R , I [ n ] g ( n T , i ) , ( n R , k ) , 0 I , I [ n ] g ( n T , i ) , ( n R , k ) , 1 R , I [ n ] g ( n T , i ) , ( n R , k ) , 1 I , I [ n ] ] ,
r k [ n ] = i = k 1 k + 1 G i , k [ n ] s i [ n ] + v k [ n ]
r ¯ k [ n ] = i = k 1 k + 1 G ¯ i , k s ¯ i [ n ] + v ¯ k [ n ]
s ¯ i [ n ] : = [ ( s i [ n + W 1 + L 1 ] ) T ( s i [ n W 2 L 2 ] ) T ] T ,
r ¯ k [ n ] : = [ ( r k [ n + W 1 ] T ) ( r k [ n W 2 ] ) T ] T
v ¯ k [ n ] : = [ ( v k [ n + W 1 ] ) T ( v k [ n W 2 ] ) T ] T ,
G ¯ i , k : = [ G i , k [ L 1 ] G i , k [ L 2 ] 0 8 × 2 0 8 × 2 G i , k [ L 1 ] G i , k [ L 2 ] ] .
F k = θ H ( G ¯ k , k H R v k v k 1 G ¯ k , k + R s s 1 ) 1 G ¯ k , k H R v k v k 1
R s s = σ s 2 2 I 4 ( W 1 + L 1 + W 2 + L 2 + 1 ) ,
R v k v k = R v v + σ s 2 2 G ¯ k 1 , k G ¯ k 1 , k H + σ s 2 2 G ¯ k + 1 , k G ¯ k + 1 , k H ,
θ H s ¯ k [ n ] = s k [ n ] .
R ε k ε k = θ H ( G ¯ k , k H R v k v k 1 G ¯ k , k + R s s 1 ) 1 θ .

Metrics