Abstract

A reconfigurable impulse radio ultra-wideband (UWB) pulse generator for various UWB shapes (e.g., monocycle, doublet, and triplet pulses) based on a nonlinear optical loop mirror (NOLM) and differential detection is proposed and experimentally demonstrated. The proposed approach can be used with different modulation formats and may be suitable for implementation in future low-cost, high-speed, short-range UWB wireless access applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
    [CrossRef]
  2. Federal Communications Commission, “Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems,” Tech. Rep. ET- Docket 98–153, FCC02–48, (2002).
  3. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett.31(21), 3083–3085 (2006).
    [CrossRef] [PubMed]
  4. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett.32(10), 1223–1225 (2007).
    [CrossRef] [PubMed]
  5. F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express18(24), 24588–24594 (2010).
    [CrossRef] [PubMed]
  6. H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, Z. Y. Chen, X. H. Zou, and X. S. Yao, “Photonic generation of impulse ultrawideband signals with switchable shapes and polarities based on frequency-to-time mapping,” Opt. Lett.37(24), 5052–5054 (2012).
    [CrossRef] [PubMed]
  7. C. Wang, F. Zeng, and J. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007).
    [CrossRef]
  8. M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-complaint UWB waveforms using FBGs: analysis and Experiment,” J. Lightwave Technol.26(5), 628–635 (2008).
    [CrossRef]
  9. M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG Tuning,” IEEE Photon. Technol. Lett.20(2), 135–137 (2008).
    [CrossRef]
  10. X. Feng, Z. Li, B. O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, “Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator,” Opt. Express18(4), 3643–3648 (2010).
    [CrossRef] [PubMed]
  11. F. Zeng and J. Yao, “Ultrawideband signal generation using a high-speed electrooptic phase modulator and an FBG-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006).
    [CrossRef]
  12. S. Wang, H. Chen, M. Xin, M. Chen, and S. Xie, “Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture,” Opt. Lett.34(20), 3092–3094 (2009).
    [CrossRef] [PubMed]
  13. E. Zhou, X. Xu, K. Lui, and K. K. Wong, “A Power-Efficient Ultra-wideband Pulse Generator Based on Multiple PM-IM Conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
    [CrossRef]
  14. Q. Wang and J. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express15(22), 14667–14672 (2007).
    [CrossRef] [PubMed]
  15. S. Pan and J. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett.34(2), 160–162 (2009).
    [CrossRef] [PubMed]
  16. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009).
    [CrossRef] [PubMed]
  17. V. Torres-Company, K. Prince, and I. T. Monroy, “Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion,” Opt. Lett.33(3), 222–224 (2008).
    [CrossRef] [PubMed]
  18. H. Lv, Y. Yu, T. Shu, D. Huang, S. Jiang, and L. P. Barry, “Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser,” Opt. Express18(7), 7219–7227 (2010).
    [CrossRef] [PubMed]
  19. J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express17(5), 3521–3530 (2009).
    [CrossRef] [PubMed]
  20. Q. Wang and J. Yao, “UWB doublet generation using nonlinearly biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006).
    [CrossRef]
  21. H. Huang, K. Xu, J. Q. Li, J. Wu, X. B. Hong, and J. T. Lin, “UWB pulse generation and distribution using NOLM based optical switch,” J. Lightwave Technol.26(15), 2635–2640 (2008).
    [CrossRef]
  22. Y. M. Chang, J. Lee, and J. H. Lee, “Ultrawideband doublet pulse generation based on nonlinear polarization rotation of an elliptically polarized beam and its distribution over a fiber/wireless link,” Opt. Express18(19), 20072–20085 (2010).
    [CrossRef] [PubMed]
  23. W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express20(18), 20222–20227 (2012).
    [CrossRef] [PubMed]
  24. J. Li, B. Kuo, and K. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.21(4), 212–214 (2009).
    [CrossRef]
  25. A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron.10(5), 1115–1123 (2004).
    [CrossRef]
  26. S. Pan and J. Yao, “UWB-over-fiber communications: Modulation and transmission,” J. Lightwave Technol.28(16), 2445–2455 (2010).
    [CrossRef]
  27. J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE5577, 133–143 (2004).
    [CrossRef]
  28. P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett.24(6), 512–514 (2012).
    [CrossRef]
  29. S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express19(12), 11780–11785 (2011).
    [CrossRef] [PubMed]
  30. J. H. Reed Christopher, An introduction to Ultra Wideband Communication System (Prentice Hall Communications Engineering and Emerging Technologies Series, 2005).
  31. M. S. Rasras, D. M. Gill, S. S. Patel, K.-Y. Tu, Y.-K. Chen, A. E. White, A. T. S. Pomerene, D. N. Carothers, M. J. Grove, D. K. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, “Demonstration of a fourth-order pole-zero optical filter integrated using CMOS processes,” J. Lightwave Technol.25(1), 87–92 (2007).
    [CrossRef]
  32. C. Pu, L. Y. Lin, E. L. Goldstein, N. J. Frigo, and R. W. Tkach, “Micromachined integrated optical polarization-state rotator,” IEEE Photon. Technol. Lett.12(10), 1358–1360 (2000).
    [CrossRef]
  33. S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express17(19), 16558–16570 (2009).
    [CrossRef] [PubMed]

2012

2011

2010

2009

2008

2007

2006

F. Zeng and J. Yao, “Ultrawideband signal generation using a high-speed electrooptic phase modulator and an FBG-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006).
[CrossRef]

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett.31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

2004

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron.10(5), 1115–1123 (2004).
[CrossRef]

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

2003

D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

2000

C. Pu, L. Y. Lin, E. L. Goldstein, N. J. Frigo, and R. W. Tkach, “Micromachined integrated optical polarization-state rotator,” IEEE Photon. Technol. Lett.12(10), 1358–1360 (2000).
[CrossRef]

Abtahi, M.

M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-complaint UWB waveforms using FBGs: analysis and Experiment,” J. Lightwave Technol.26(5), 628–635 (2008).
[CrossRef]

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG Tuning,” IEEE Photon. Technol. Lett.20(2), 135–137 (2008).
[CrossRef]

Baets, R. G.

Baghban, M. A.

Barry, L. P.

Beals, M. A.

Bimberg, D.

Blais, S.

Bogaerts, W.

Bogoni, A.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron.10(5), 1115–1123 (2004).
[CrossRef]

Bolea, M.

Bull, J. D.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Capmany, J.

Cardenas, J.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett.24(6), 512–514 (2012).
[CrossRef]

Carothers, D. N.

Chang, Y. M.

Chen, H.

Chen, M.

Chen, Y.-K.

Chen, Z. Y.

Clemmen, S.

Dong, J.

Emplit, P.

Fairburn, M.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Fathpour, S.

Feng, X.

Frigo, N. J.

C. Pu, L. Y. Lin, E. L. Goldstein, N. J. Frigo, and R. W. Tkach, “Micromachined integrated optical polarization-state rotator,” IEEE Photon. Technol. Lett.12(10), 1358–1360 (2000).
[CrossRef]

Fu, S.

Ghanipour, P.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Ghelfi, P.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron.10(5), 1115–1123 (2004).
[CrossRef]

Gill, D. M.

Goldstein, E. L.

C. Pu, L. Y. Lin, E. L. Goldstein, N. J. Frigo, and R. W. Tkach, “Micromachined integrated optical polarization-state rotator,” IEEE Photon. Technol. Lett.12(10), 1358–1360 (2000).
[CrossRef]

Grove, M. J.

Guan, B. O.

Hirt, W.

D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

Hofmann, W.

Hong, X. B.

Huang, D.

Huang, H.

Jaeger, N. A. F.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Jiang, H. Y.

Jiang, S.

Kato, H.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Khan, S.

Khurgin, J. B.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett.24(6), 512–514 (2012).
[CrossRef]

Kimerling, L. C.

Kuo, B.

J. Li, B. Kuo, and K. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.21(4), 212–214 (2009).
[CrossRef]

LaRochelle, S.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG Tuning,” IEEE Photon. Technol. Lett.20(2), 135–137 (2008).
[CrossRef]

M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-complaint UWB waveforms using FBGs: analysis and Experiment,” J. Lightwave Technol.26(5), 628–635 (2008).
[CrossRef]

Lee, J.

Lee, J. H.

Li, J.

J. Li, B. Kuo, and K. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.21(4), 212–214 (2009).
[CrossRef]

Li, J. Q.

Li, W.

Li, Z.

Lin, J. T.

Lin, L. Y.

C. Pu, L. Y. Lin, E. L. Goldstein, N. J. Frigo, and R. W. Tkach, “Micromachined integrated optical polarization-state rotator,” IEEE Photon. Technol. Lett.12(10), 1358–1360 (2000).
[CrossRef]

Lipson, M.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett.24(6), 512–514 (2012).
[CrossRef]

Lu, C.

Lui, K.

E. Zhou, X. Xu, K. Lui, and K. K. Wong, “A Power-Efficient Ultra-wideband Pulse Generator Based on Multiple PM-IM Conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
[CrossRef]

Luo, B.

Lv, H.

Magné, J.

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG Tuning,” IEEE Photon. Technol. Lett.20(2), 135–137 (2008).
[CrossRef]

M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-complaint UWB waveforms using FBGs: analysis and Experiment,” J. Lightwave Technol.26(5), 628–635 (2008).
[CrossRef]

Massar, S.

Michel, J.

Mirshafiei, M.

M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-complaint UWB waveforms using FBGs: analysis and Experiment,” J. Lightwave Technol.26(5), 628–635 (2008).
[CrossRef]

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG Tuning,” IEEE Photon. Technol. Lett.20(2), 135–137 (2008).
[CrossRef]

Monroy, I. T.

Mora, J.

Morton, P. A.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett.24(6), 512–514 (2012).
[CrossRef]

Ortega, B.

Pan, S.

Pan, W.

Patel, S. S.

Phan Huy, K.

Pomerene, A. T. S.

Porcino, D.

D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

Poti, L.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron.10(5), 1115–1123 (2004).
[CrossRef]

Prince, K.

Pu, C.

C. Pu, L. Y. Lin, E. L. Goldstein, N. J. Frigo, and R. W. Tkach, “Micromachined integrated optical polarization-state rotator,” IEEE Photon. Technol. Lett.12(10), 1358–1360 (2000).
[CrossRef]

Rasras, M. S.

Reid, A.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Research, P.

D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

Rusch, L. A.

M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-complaint UWB waveforms using FBGs: analysis and Experiment,” J. Lightwave Technol.26(5), 628–635 (2008).
[CrossRef]

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG Tuning,” IEEE Photon. Technol. Lett.20(2), 135–137 (2008).
[CrossRef]

Scaffardi, M.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron.10(5), 1115–1123 (2004).
[CrossRef]

Shu, T.

Shum, P.

Sparacin, D. K.

Sun, J.

Sun, Q.

Tam, H. Y.

Tkach, R. W.

C. Pu, L. Y. Lin, E. L. Goldstein, N. J. Frigo, and R. W. Tkach, “Micromachined integrated optical polarization-state rotator,” IEEE Photon. Technol. Lett.12(10), 1358–1360 (2000).
[CrossRef]

Torres-Company, V.

Tu, K.-Y.

Wai, P. K. A.

Wang, C.

C. Wang, F. Zeng, and J. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007).
[CrossRef]

Wang, F.

Wang, J.

Wang, L. X.

Wang, Q.

Wang, S.

White, A. E.

Wong, K.

J. Li, B. Kuo, and K. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.21(4), 212–214 (2009).
[CrossRef]

Wong, K. K.

E. Zhou, X. Xu, K. Lui, and K. K. Wong, “A Power-Efficient Ultra-wideband Pulse Generator Based on Multiple PM-IM Conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
[CrossRef]

Wu, J.

Xie, S.

Xin, M.

Xu, E.

Xu, J.

Xu, K.

Xu, X.

E. Zhou, X. Xu, K. Lui, and K. K. Wong, “A Power-Efficient Ultra-wideband Pulse Generator Based on Multiple PM-IM Conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
[CrossRef]

Yan, L. S.

Yao, J.

S. Pan and J. Yao, “UWB-over-fiber communications: Modulation and transmission,” J. Lightwave Technol.28(16), 2445–2455 (2010).
[CrossRef]

S. Pan and J. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett.34(2), 160–162 (2009).
[CrossRef] [PubMed]

C. Wang, F. Zeng, and J. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007).
[CrossRef]

Q. Wang and J. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express15(22), 14667–14672 (2007).
[CrossRef] [PubMed]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett.31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006).
[CrossRef]

F. Zeng and J. Yao, “Ultrawideband signal generation using a high-speed electrooptic phase modulator and an FBG-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006).
[CrossRef]

Yao, X. S.

Ye, J.

Yu, Y.

Zeng, F.

C. Wang, F. Zeng, and J. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007).
[CrossRef]

F. Zeng and J. Yao, “Ultrawideband signal generation using a high-speed electrooptic phase modulator and an FBG-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett.31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

Zhang, W.

Zhang, X.

Zhou, E.

E. Zhou, X. Xu, K. Lui, and K. K. Wong, “A Power-Efficient Ultra-wideband Pulse Generator Based on Multiple PM-IM Conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
[CrossRef]

Zhu, N. H.

Zou, X. H.

Electron. Lett.

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006).
[CrossRef]

IEEE Commun. Mag.

D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron.10(5), 1115–1123 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

P. A. Morton, J. Cardenas, J. B. Khurgin, and M. Lipson, “Fast thermal switching of wideband optical delay line with no long-term transient,” IEEE Photon. Technol. Lett.24(6), 512–514 (2012).
[CrossRef]

C. Pu, L. Y. Lin, E. L. Goldstein, N. J. Frigo, and R. W. Tkach, “Micromachined integrated optical polarization-state rotator,” IEEE Photon. Technol. Lett.12(10), 1358–1360 (2000).
[CrossRef]

J. Li, B. Kuo, and K. Wong, “Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.21(4), 212–214 (2009).
[CrossRef]

C. Wang, F. Zeng, and J. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007).
[CrossRef]

M. Abtahi, M. Mirshafiei, J. Magné, L. A. Rusch, and S. LaRochelle, “Ultra-wideband waveform generator based on optical pulse-shaping and FBG Tuning,” IEEE Photon. Technol. Lett.20(2), 135–137 (2008).
[CrossRef]

E. Zhou, X. Xu, K. Lui, and K. K. Wong, “A Power-Efficient Ultra-wideband Pulse Generator Based on Multiple PM-IM Conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
[CrossRef]

F. Zeng and J. Yao, “Ultrawideband signal generation using a high-speed electrooptic phase modulator and an FBG-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Y. M. Chang, J. Lee, and J. H. Lee, “Ultrawideband doublet pulse generation based on nonlinear polarization rotation of an elliptically polarized beam and its distribution over a fiber/wireless link,” Opt. Express18(19), 20072–20085 (2010).
[CrossRef] [PubMed]

F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express18(24), 24588–24594 (2010).
[CrossRef] [PubMed]

S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express19(12), 11780–11785 (2011).
[CrossRef] [PubMed]

W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, and D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express20(18), 20222–20227 (2012).
[CrossRef] [PubMed]

X. Feng, Z. Li, B. O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, “Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator,” Opt. Express18(4), 3643–3648 (2010).
[CrossRef] [PubMed]

H. Lv, Y. Yu, T. Shu, D. Huang, S. Jiang, and L. P. Barry, “Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser,” Opt. Express18(7), 7219–7227 (2010).
[CrossRef] [PubMed]

Q. Wang and J. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express15(22), 14667–14672 (2007).
[CrossRef] [PubMed]

J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express17(5), 3521–3530 (2009).
[CrossRef] [PubMed]

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009).
[CrossRef] [PubMed]

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express17(19), 16558–16570 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communication systems,” Proc. SPIE5577, 133–143 (2004).
[CrossRef]

Other

J. H. Reed Christopher, An introduction to Ultra Wideband Communication System (Prentice Hall Communications Engineering and Emerging Technologies Series, 2005).

Federal Communications Commission, “Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems,” Tech. Rep. ET- Docket 98–153, FCC02–48, (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) NOLM configuration. (b) Pulse shaping effect with different transfer functions. (c) Simulation of the NOLM transfer function for different values of φ.

Fig. 2
Fig. 2

Concept for monocycle and triplet pulse generation.

Fig. 3
Fig. 3

Experimental setup of the proposed reconfigurable UWB pulse generator.

Fig. 4
Fig. 4

(a), (c), (e), (g) Measured waveforms and (b), (d), (f), (h) corresponding RF spectra of the generated UWB monocycle and doublet pulses. (RBW: 300 kHz)

Fig. 5
Fig. 5

(a), (c) Measured waveforms and (b), (d) corresponding RF spectra of the generated UWB triplet pulses. (RBW: 300 kHz)

Fig. 6
Fig. 6

(a) eye diagram and (b) its corresponding RF spectral at the output of the NOLM; (c) eye diagram and (b) its corresponding RF spectrum after 10-km SSMF transmission. (e) Measured BER of back-to-back and after 10 km SSMF transmission.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E cw = 2 2 E in = 2 2 ( E in x + E in y )
E ccw = 2 2 E in e π 2 i = 2 2 ( E in x + E in y ) e π 2 i
M1=( 1 0 0 e iφ ) M2=( cosθ sinθ sinθ cosθ )
E cw out = 1 2 (M2M1)( e i ϕ CW x 0 0 e i ϕ CW y )( E in x E in y )= 1 2 ( E in x cosθ e i ϕ CW x E in y sinθ e i( ϕ CW y φ) E in x sinθ e i ϕ CW x + E in y cosθ e i( ϕ CW y φ) )
E ccw out = 1 2 ( 1 0 0 1 )(M1M2)( E in x E in y ) e iπ = 1 2 ( E in x cosθ E in y sinθ E in x sinθ e iφ + E in y cosθ e iφ )
Pout= | 2 2 ( E cw out + E ccw out ) | 2

Metrics