Abstract

In this paper a new class of optical Fabry-Perot-based ultrasound detectors using low acoustic impedance glancing angle deposited (GLAD) films is demonstrated. GLAD is a single-step physical vapor-deposition (PVD) technique used to fabricate porous nanostructured thin films. Using titanium dioxide (TiO2), a transparent semiconductor with a high refractive index (n = 2.4), the GLAD technique can be employed to fabricate samples with tailored nano-porosity, refractive index periodicities, and high Q-factor reflectance spectra. The average acoustic impedance of the porous films is lower than bulk materials which will improve acoustic coupling, especially for high acoustic frequencies. For this work, two filters with high reflection in the C-band range and high transparency in the visible range (~80%) using GLAD films were fabricated. A 23 µm Parylene C layer was sandwiched between these two GLAD films in order to form a GLAD Fabry Perot Interferometer (GLAD-FPI). A high speed tunable continuous wavelength C-band laser was focused at the FPI and the reflection was measured using a high speed photodiode. The ultrasound pressure modulated the optical thickness of the FPI and hence its reflectivity. The fabricated sensor was tested using a 10 MHz unfocused transducer. The ultrasound transducer was calibrated using a hydrophone. The minimum detectable acoustic pressure was measured as 80 ± 20 Pa and the −3dB bandwidth was measured to be 18 MHz. This ultra-sensitive sensor can be an alternative to piezoelectric ultrasound transducers for any techniques in which ultrasound waves need to be detected including ultrasonic and photoacoustic imaging modalities. We demonstrate our GLAD-FPI for photoacoustic signal detection in optical-resolution photoacoustic microscopy (OR-PAM). To the best of our knowledge, this is the first time that a FPI fabricated using the GLAD method has been used for ultra-sensitive ultrasound detection.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Y. Hsieh, S. L. Chen, T. Ling, L. J. Guo, and P. C. Li, “All-optical scanhead for ultrasound and photoacoustic dual-modality imaging,” Opt. Express 20(2), 1588–1596 (2012).
    [Crossref] [PubMed]
  2. P. Hajireza, W. Shi, P. Shao, S. Kerr, and R. J. Zemp, “Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology,” Proc. SPIE 7899, 78990P, 78990P-6 (2011).
    [Crossref]
  3. P. Hajireza, W. Shi, and R. J. Zemp, “Real-time handheld optical-resolution photoacoustic microscopy,” Opt. Express 19(21), 20097–20102 (2011).
    [Crossref] [PubMed]
  4. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  5. Z. Xie, S. L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
    [Crossref] [PubMed]
  6. S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
    [Crossref]
  7. S. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O'Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE 6437, 643728, 643728-8 (2007).
    [Crossref]
  8. P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36(20), 4107–4109 (2011).
    [Crossref] [PubMed]
  9. E. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F, 78991F-6 (2011).
    [Crossref]
  10. E. Z. Zhang, J. Laufer, R. B. Pedley, and P. Beard, “3D photoacoustic imaging system for in vivo studies of small animal models,” Proc. SPIE 6856, 68560P, 68560P-8 (2008).
    [Crossref]
  11. E. Z. Zhang, J. Laufer, B. Považay, A. Alex, B. Hofer, W. Drexler, and P. Beard, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Proc. SPIE 7564, 75640U, 75640U-7 (2010).
    [Crossref]
  12. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
    [Crossref]
  13. A. Lakhtakia and R. Messier, in Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2004).
  14. R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18(4), 1538–1545 (2000).
    [Crossref]
  15. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
    [Crossref]
  16. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  17. S. R. Jim, M. T. Taschuk, G. E. Morlock, L. W. Bezuidenhout, W. Schwack, and M. J. Brett, “Engineered anisotropic microstructures for ultrathin-layer chromatography,” Anal. Chem. 82(12), 5349–5356 (2010).
    [Crossref] [PubMed]
  18. J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” J. Adv. Mater. 12(5), 371–373 (2000).
    [Crossref]
  19. H. Y. Yang, M. F. Lee, C. H. Huang, Y. S. Lo, Y. J. Chen, and M. S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
    [Crossref]
  20. S. John, “Strong localization of photons in certain disordered dielectric super lattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  21. M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100(4), 044322 (2006).
    [Crossref]
  22. M. M. Hawkeye, K. M. Krause, and M. J. Brett, “Ambient humidity monitoring using a 1D photonic crystal sensor fabricated with glancing angle deposition,” Proc. SPIE 7356, 73560G (2009).
    [Crossref]
  23. S. C. Richard, Cobbold, in Foundations of Biomedical Ultrasound (Oxford University, 2006).
  24. M. M. Hawkeye, “Engineering optical nanomaterials using glancing angle deposition,” PhD Thesis, UofA (2010).
  25. H. A. MacLeod, in Thin Film Optical Filters (American Elsevier, 1969).
  26. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003).
    [Crossref] [PubMed]
  27. A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films and the effects of post-deposition annealing,” Proc. SPIE 5464, 198–208 (2004).
    [Crossref]
  28. K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Proc. SPIE 41, 2357–2364 (2002).
  29. B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterization,” J. Phys. 1, 32–37 (2004).

2012 (1)

2011 (5)

2010 (2)

E. Z. Zhang, J. Laufer, B. Považay, A. Alex, B. Hofer, W. Drexler, and P. Beard, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Proc. SPIE 7564, 75640U, 75640U-7 (2010).
[Crossref]

S. R. Jim, M. T. Taschuk, G. E. Morlock, L. W. Bezuidenhout, W. Schwack, and M. J. Brett, “Engineered anisotropic microstructures for ultrathin-layer chromatography,” Anal. Chem. 82(12), 5349–5356 (2010).
[Crossref] [PubMed]

2009 (2)

H. Y. Yang, M. F. Lee, C. H. Huang, Y. S. Lo, Y. J. Chen, and M. S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

M. M. Hawkeye, K. M. Krause, and M. J. Brett, “Ambient humidity monitoring using a 1D photonic crystal sensor fabricated with glancing angle deposition,” Proc. SPIE 7356, 73560G (2009).
[Crossref]

2008 (2)

2007 (3)

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

S. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O'Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE 6437, 643728, 643728-8 (2007).
[Crossref]

2006 (1)

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100(4), 044322 (2006).
[Crossref]

2005 (1)

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

2004 (2)

B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterization,” J. Phys. 1, 32–37 (2004).

A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films and the effects of post-deposition annealing,” Proc. SPIE 5464, 198–208 (2004).
[Crossref]

2003 (1)

2002 (1)

K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Proc. SPIE 41, 2357–2364 (2002).

2000 (2)

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18(4), 1538–1545 (2000).
[Crossref]

J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” J. Adv. Mater. 12(5), 371–373 (2000).
[Crossref]

1997 (1)

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

1987 (1)

S. John, “Strong localization of photons in certain disordered dielectric super lattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Alex, A.

E. Z. Zhang, J. Laufer, B. Považay, A. Alex, B. Hofer, W. Drexler, and P. Beard, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Proc. SPIE 7564, 75640U, 75640U-7 (2010).
[Crossref]

Ashkenazi, S.

S. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O'Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE 6437, 643728, 643728-8 (2007).
[Crossref]

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

Beard, P.

E. Z. Zhang, J. Laufer, B. Považay, A. Alex, B. Hofer, W. Drexler, and P. Beard, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Proc. SPIE 7564, 75640U, 75640U-7 (2010).
[Crossref]

E. Z. Zhang, J. Laufer, R. B. Pedley, and P. Beard, “3D photoacoustic imaging system for in vivo studies of small animal models,” Proc. SPIE 6856, 68560P, 68560P-8 (2008).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Beard, P. C.

E. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F, 78991F-6 (2011).
[Crossref]

B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterization,” J. Phys. 1, 32–37 (2004).

Bezuidenhout, L. W.

S. R. Jim, M. T. Taschuk, G. E. Morlock, L. W. Bezuidenhout, W. Schwack, and M. J. Brett, “Engineered anisotropic microstructures for ultrathin-layer chromatography,” Anal. Chem. 82(12), 5349–5356 (2010).
[Crossref] [PubMed]

Brett, M. J.

S. R. Jim, M. T. Taschuk, G. E. Morlock, L. W. Bezuidenhout, W. Schwack, and M. J. Brett, “Engineered anisotropic microstructures for ultrathin-layer chromatography,” Anal. Chem. 82(12), 5349–5356 (2010).
[Crossref] [PubMed]

M. M. Hawkeye, K. M. Krause, and M. J. Brett, “Ambient humidity monitoring using a 1D photonic crystal sensor fabricated with glancing angle deposition,” Proc. SPIE 7356, 73560G (2009).
[Crossref]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100(4), 044322 (2006).
[Crossref]

A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films and the effects of post-deposition annealing,” Proc. SPIE 5464, 198–208 (2004).
[Crossref]

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42(22), 4573–4579 (2003).
[Crossref] [PubMed]

J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” J. Adv. Mater. 12(5), 371–373 (2000).
[Crossref]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

Broer, D. J.

J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” J. Adv. Mater. 12(5), 371–373 (2000).
[Crossref]

Buma, T.

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

Carson, P. L.

Chen, M.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Chen, S. L.

Chen, Y. J.

H. Y. Yang, M. F. Lee, C. H. Huang, Y. S. Lo, Y. J. Chen, and M. S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Cox, B. T.

B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterization,” J. Phys. 1, 32–37 (2004).

Drexler, W.

E. Z. Zhang, J. Laufer, B. Považay, A. Alex, B. Hofer, W. Drexler, and P. Beard, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Proc. SPIE 7564, 75640U, 75640U-7 (2010).
[Crossref]

Guo, L. J.

Hajireza, P.

Hawkeye, M. M.

M. M. Hawkeye, K. M. Krause, and M. J. Brett, “Ambient humidity monitoring using a 1D photonic crystal sensor fabricated with glancing angle deposition,” Proc. SPIE 7356, 73560G (2009).
[Crossref]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100(4), 044322 (2006).
[Crossref]

Hofer, B.

E. Z. Zhang, J. Laufer, B. Považay, A. Alex, B. Hofer, W. Drexler, and P. Beard, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Proc. SPIE 7564, 75640U, 75640U-7 (2010).
[Crossref]

Hou, Y.

S. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O'Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE 6437, 643728, 643728-8 (2007).
[Crossref]

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

Hsieh, B. Y.

Huang, C. H.

H. Y. Yang, M. F. Lee, C. H. Huang, Y. S. Lo, Y. J. Chen, and M. S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Huang, S.

S. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O'Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE 6437, 643728, 643728-8 (2007).
[Crossref]

Jim, S. R.

S. R. Jim, M. T. Taschuk, G. E. Morlock, L. W. Bezuidenhout, W. Schwack, and M. J. Brett, “Engineered anisotropic microstructures for ultrathin-layer chromatography,” Anal. Chem. 82(12), 5349–5356 (2010).
[Crossref] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric super lattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Kennedy, S. R.

Kerr, S.

P. Hajireza, W. Shi, P. Shao, S. Kerr, and R. J. Zemp, “Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology,” Proc. SPIE 7899, 78990P, 78990P-6 (2011).
[Crossref]

Kim, J. K.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Krause, K. M.

M. M. Hawkeye, K. M. Krause, and M. J. Brett, “Ambient humidity monitoring using a 1D photonic crystal sensor fabricated with glancing angle deposition,” Proc. SPIE 7356, 73560G (2009).
[Crossref]

Laufer, J.

E. Z. Zhang, J. Laufer, B. Považay, A. Alex, B. Hofer, W. Drexler, and P. Beard, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Proc. SPIE 7564, 75640U, 75640U-7 (2010).
[Crossref]

E. Z. Zhang, J. Laufer, R. B. Pedley, and P. Beard, “3D photoacoustic imaging system for in vivo studies of small animal models,” Proc. SPIE 6856, 68560P, 68560P-8 (2008).
[Crossref]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Laufer, J. G.

B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterization,” J. Phys. 1, 32–37 (2004).

Lee, M. F.

H. Y. Yang, M. F. Lee, C. H. Huang, Y. S. Lo, Y. J. Chen, and M. S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Li, P. C.

Lin, S. Y.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Ling, T.

Liu, W.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Lo, Y. S.

H. Y. Yang, M. F. Lee, C. H. Huang, Y. S. Lo, Y. J. Chen, and M. S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Messier, R.

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18(4), 1538–1545 (2000).
[Crossref]

Morlock, G. E.

S. R. Jim, M. T. Taschuk, G. E. Morlock, L. W. Bezuidenhout, W. Schwack, and M. J. Brett, “Engineered anisotropic microstructures for ultrathin-layer chromatography,” Anal. Chem. 82(12), 5349–5356 (2010).
[Crossref] [PubMed]

O’Donnell, M.

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

O'Donnell, M.

S. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O'Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE 6437, 643728, 643728-8 (2007).
[Crossref]

Pedley, R. B.

E. Z. Zhang, J. Laufer, R. B. Pedley, and P. Beard, “3D photoacoustic imaging system for in vivo studies of small animal models,” Proc. SPIE 6856, 68560P, 68560P-8 (2008).
[Crossref]

Považay, B.

E. Z. Zhang, J. Laufer, B. Považay, A. Alex, B. Hofer, W. Drexler, and P. Beard, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Proc. SPIE 7564, 75640U, 75640U-7 (2010).
[Crossref]

Rao, K. N.

K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Proc. SPIE 41, 2357–2364 (2002).

Robbie, K.

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

Schubert, E. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schwack, W.

S. R. Jim, M. T. Taschuk, G. E. Morlock, L. W. Bezuidenhout, W. Schwack, and M. J. Brett, “Engineered anisotropic microstructures for ultrathin-layer chromatography,” Anal. Chem. 82(12), 5349–5356 (2010).
[Crossref] [PubMed]

Shao, P.

P. Hajireza, W. Shi, P. Shao, S. Kerr, and R. J. Zemp, “Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology,” Proc. SPIE 7899, 78990P, 78990P-6 (2011).
[Crossref]

Shi, W.

Sit, J. C.

A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films and the effects of post-deposition annealing,” Proc. SPIE 5464, 198–208 (2004).
[Crossref]

J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” J. Adv. Mater. 12(5), 371–373 (2000).
[Crossref]

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Sunal, P. D.

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18(4), 1538–1545 (2000).
[Crossref]

Taschuk, M. T.

S. R. Jim, M. T. Taschuk, G. E. Morlock, L. W. Bezuidenhout, W. Schwack, and M. J. Brett, “Engineered anisotropic microstructures for ultrathin-layer chromatography,” Anal. Chem. 82(12), 5349–5356 (2010).
[Crossref] [PubMed]

van Popta, A. C.

A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films and the effects of post-deposition annealing,” Proc. SPIE 5464, 198–208 (2004).
[Crossref]

Venugopal, V. C.

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18(4), 1538–1545 (2000).
[Crossref]

Wang, X.

Witte, R. S.

S. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O'Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE 6437, 643728, 643728-8 (2007).
[Crossref]

Wong, M. S.

H. Y. Yang, M. F. Lee, C. H. Huang, Y. S. Lo, Y. J. Chen, and M. S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Xie, Z.

Yang, H. Y.

H. Y. Yang, M. F. Lee, C. H. Huang, Y. S. Lo, Y. J. Chen, and M. S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Zemp, R. J.

Zhang, E.

Zhang, E. Z.

E. Z. Zhang, J. Laufer, B. Považay, A. Alex, B. Hofer, W. Drexler, and P. Beard, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Proc. SPIE 7564, 75640U, 75640U-7 (2010).
[Crossref]

E. Z. Zhang, J. Laufer, R. B. Pedley, and P. Beard, “3D photoacoustic imaging system for in vivo studies of small animal models,” Proc. SPIE 6856, 68560P, 68560P-8 (2008).
[Crossref]

B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterization,” J. Phys. 1, 32–37 (2004).

Anal. Chem. (1)

S. R. Jim, M. T. Taschuk, G. E. Morlock, L. W. Bezuidenhout, W. Schwack, and M. J. Brett, “Engineered anisotropic microstructures for ultrathin-layer chromatography,” Anal. Chem. 82(12), 5349–5356 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

J. Adv. Mater. (1)

J. C. Sit, D. J. Broer, and M. J. Brett, “Liquid crystal alignment and switching in porous chiral thin films,” J. Adv. Mater. 12(5), 371–373 (2000).
[Crossref]

J. Appl. Phys. (1)

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100(4), 044322 (2006).
[Crossref]

J. Phys. (1)

B. T. Cox, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterization,” J. Phys. 1, 32–37 (2004).

J. Vac. Sci. Technol. A (3)

R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18(4), 1538–1545 (2000).
[Crossref]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

Nat. Photonics (1)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. John, “Strong localization of photons in certain disordered dielectric super lattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Proc. SPIE (8)

A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films and the effects of post-deposition annealing,” Proc. SPIE 5464, 198–208 (2004).
[Crossref]

K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Proc. SPIE 41, 2357–2364 (2002).

M. M. Hawkeye, K. M. Krause, and M. J. Brett, “Ambient humidity monitoring using a 1D photonic crystal sensor fabricated with glancing angle deposition,” Proc. SPIE 7356, 73560G (2009).
[Crossref]

E. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F, 78991F-6 (2011).
[Crossref]

E. Z. Zhang, J. Laufer, R. B. Pedley, and P. Beard, “3D photoacoustic imaging system for in vivo studies of small animal models,” Proc. SPIE 6856, 68560P, 68560P-8 (2008).
[Crossref]

E. Z. Zhang, J. Laufer, B. Považay, A. Alex, B. Hofer, W. Drexler, and P. Beard, “Multimodal simultaneous photoacoustic tomography, optical resolution microscopy, and OCT system,” Proc. SPIE 7564, 75640U, 75640U-7 (2010).
[Crossref]

P. Hajireza, W. Shi, P. Shao, S. Kerr, and R. J. Zemp, “Optical-resolution photoacoustic micro-endoscopy using image-guide fibers and fiber laser technology,” Proc. SPIE 7899, 78990P, 78990P-6 (2011).
[Crossref]

S. Huang, S. Ashkenazi, Y. Hou, R. S. Witte, and M. O'Donnell, “Toward fiber-based high-frequency 3D ultrasound imaging,” Proc. SPIE 6437, 643728, 643728-8 (2007).
[Crossref]

Thin Solid Films (1)

H. Y. Yang, M. F. Lee, C. H. Huang, Y. S. Lo, Y. J. Chen, and M. S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Other (4)

A. Lakhtakia and R. Messier, in Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2004).

S. C. Richard, Cobbold, in Foundations of Biomedical Ultrasound (Oxford University, 2006).

M. M. Hawkeye, “Engineering optical nanomaterials using glancing angle deposition,” PhD Thesis, UofA (2010).

H. A. MacLeod, in Thin Film Optical Filters (American Elsevier, 1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The configuration of Fabry Perot interferometers (FPI). The thickness of each GLAD filter was 2.1 µm. The Parylene C thickness at the middle and the top layers were 23 µm and 4µm, respectively.

Fig. 2
Fig. 2

SEM image of first GLAD layer. Dense layers were deposited at an angle of α = 60°. Sparse, columnar, layers were deposited at an angle of α = 80°.

Fig. 3
Fig. 3

(a) Transmission spectrum of a single GLAD film deposited on glass both simulation and experimental work. (b) Transmission spectrum of the four layer GLAD, Parylene C, four layer GLAD FPI showing sharp resonant peaks near the C-band (experimental). (c) Transmission spectrum of the GLAD-FPI near the excitation wavelength range (experimental). (d) Measured reflectance spectra for 1 peak (experimental).

Fig. 4
Fig. 4

(a) The experimental setup used for testing our GLAD-FPI sensor. Two separate setups are shown. Setup 1 is used for photoacoustic imaging. Setup 2 is used to test the receive sensitivity using an external ultrasound transducer. PD: photodiode, OL: objective lens, SMF: single mode fiber, FG: function generator, FLD: Fiber Laser Driver (b) The GLAD FPI.

Fig. 5
Fig. 5

Optical-Resolution Photoacoustic Microscopy images of carbon fiber networks with 7 µm diameter of each fiber.

Fig. 6
Fig. 6

GLAD-FPI frequency response.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T= 4 Z 3 Z1 ( Z 1 + Z 3 ) 2 cos 2 ( 2πl λ )+ ( Z 2 + Z 1 Z 3 / Z 2 ) 2 sin 2 ( 2πl λ ) .
M j =| cos( β j ) i p j i p j sin( β j ) cos( β j ) |.
M= j=1 N M j .
t= 2 p 1 ( M 11 +  M 12 p N ) p 1 +( M 21 + M 22 p N ) .
T s = p N p 1 | t | 2 .

Metrics