Abstract

A hitless wavelength-selective switch (WSS) based on InGaAs/InAlAs multiple quantum well (MQW) second-order series-coupled microring resonators is proposed and fabricated. In the core layer, a five-layer asymmetric coupled quantum well (FACQW) structure is employed. The WSS is driven by the electrorefractive index change in the FACQW core layer caused by the quantum-confined Stark effect (QCSE). The wafer for the WSS is grown by molecular beam epitaxy and waveguide structures are formed by dry etching. Boxlike spectrum responses and hitless switching characteristics of the WSS are successfully demonstrated for the first time. The change in coupling efficiency at a coupler between a ring and a busline and between rings and its effect on the switching characteristics are also discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
    [CrossRef]
  2. S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23(4), 1800–1807 (2005).
    [CrossRef]
  3. Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
    [CrossRef]
  4. T. Kato and Y. Kokubun, “Optimum coupling coefficients in second-order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol.24(2), 991–999 (2006).
    [CrossRef]
  5. S. Suzuki, Y. Kokubun, and S. T. Chu; “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002).
    [CrossRef]
  6. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express15(22), 14765–14771 (2007).
    [CrossRef] [PubMed]
  7. Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
    [CrossRef]
  8. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
    [CrossRef]
  9. T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
    [CrossRef]
  10. O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
    [CrossRef]
  11. S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
    [CrossRef]
  12. T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007).
    [CrossRef]
  13. J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
    [CrossRef]
  14. D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
    [CrossRef]
  15. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
    [CrossRef]
  16. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007).
    [CrossRef] [PubMed]
  17. R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
    [CrossRef]
  18. T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
    [CrossRef]
  19. X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
    [CrossRef]
  20. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
    [CrossRef]
  21. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
    [CrossRef]
  22. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
    [CrossRef]
  23. R. Grover, Member, IEEET. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
    [CrossRef]
  24. H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
    [CrossRef]
  25. S. Ravindran, A. Datta, K. Alameh, and Y. T. Lee, “GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change,” Opt. Express20(14), 15610–15627 (2012).
    [CrossRef] [PubMed]
  26. T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011).
    [CrossRef]
  27. H. Kaneshige, Y. Ueyama, H. Yamada, H. Yajima, T. Arakawa, and Y. Kokubun, “InGaAs/InAlAs multiple quantum well Mach-Zehnder modulator with single microring resonator,” Jpn. J. Appl. Phys.51(2), 02BG01 (2012).
    [CrossRef]
  28. H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS) 2012, Th-S24–O07 (2012).
  29. H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
    [CrossRef]
  30. T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
    [CrossRef]
  31. G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
    [CrossRef]
  32. R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
    [CrossRef]
  33. C. K. Madsen and J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol.14(3), 437–447 (1996).
    [CrossRef]
  34. T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
    [CrossRef]
  35. M. Born and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University Press, 1999), p.838.
  36. S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B Condens. Matter43(12), 9649–9661 (1991).
    [CrossRef] [PubMed]
  37. T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
    [CrossRef]

2012 (5)

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

S. Ravindran, A. Datta, K. Alameh, and Y. T. Lee, “GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change,” Opt. Express20(14), 15610–15627 (2012).
[CrossRef] [PubMed]

H. Kaneshige, Y. Ueyama, H. Yamada, H. Yajima, T. Arakawa, and Y. Kokubun, “InGaAs/InAlAs multiple quantum well Mach-Zehnder modulator with single microring resonator,” Jpn. J. Appl. Phys.51(2), 02BG01 (2012).
[CrossRef]

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

2011 (2)

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011).
[CrossRef]

2010 (1)

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

2009 (1)

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
[CrossRef]

2008 (2)

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

2007 (5)

T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007).
[CrossRef]

J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
[CrossRef]

C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007).
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express15(22), 14765–14771 (2007).
[CrossRef] [PubMed]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
[CrossRef]

2006 (4)

Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
[CrossRef]

T. Kato and Y. Kokubun, “Optimum coupling coefficients in second-order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol.24(2), 991–999 (2006).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
[CrossRef]

2005 (2)

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23(4), 1800–1807 (2005).
[CrossRef]

2004 (3)

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

R. Grover, Member, IEEET. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

R. Grover, Member, IEEET. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

2003 (1)

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
[CrossRef]

2002 (2)

S. Suzuki, Y. Kokubun, and S. T. Chu; “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

2000 (1)

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

1998 (1)

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

1996 (1)

C. K. Madsen and J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol.14(3), 437–447 (1996).
[CrossRef]

1995 (2)

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

1991 (1)

S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B Condens. Matter43(12), 9649–9661 (1991).
[CrossRef] [PubMed]

1984 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

Alameh, K.

Amatya, R.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

Amma, Y.

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

Arakawa, T.

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

H. Kaneshige, Y. Ueyama, H. Yamada, H. Yajima, T. Arakawa, and Y. Kokubun, “InGaAs/InAlAs multiple quantum well Mach-Zehnder modulator with single microring resonator,” Jpn. J. Appl. Phys.51(2), 02BG01 (2012).
[CrossRef]

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011).
[CrossRef]

Armenise, M. N.

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

Baker, N.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

Barbarossa, G.

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

Bogris, A.

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Calhoun, L. C.

R. Grover, Member, IEEET. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

Chang, S.-J.

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Chen, Y.-J.

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

Chu, C.-H.

T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

S. Suzuki, Y. Kokubun, and S. T. Chu; “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002).
[CrossRef]

Chuang, S. L.

S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B Condens. Matter43(12), 9649–9661 (1991).
[CrossRef] [PubMed]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Datta, A.

Driessen, A.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

Emelett, S. J.

Feng, H.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Feng, S.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Fukuoka, M.

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

Geuzebroek, D.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Goebuchi, Y.

T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
[CrossRef]

Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
[CrossRef]

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Gotoh, T.

Grover, R.

R. Grover, Member, IEEET. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Hariki, T.

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

Hasegawa, R.

Hibino, Y.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Himeno, A.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Ho, P.-T.

R. Grover, Member, IEEET. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

Holzwarth, C. W.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

Hu, T.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Ibrahim, T. A.

R. Grover, Member, IEEET. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Ide, T.

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

Jiang, X.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Ka, T.

Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
[CrossRef]

Kanakaraju, S.

R. Grover, Member, IEEET. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

Kaneshige, H.

H. Kaneshige, Y. Ueyama, H. Yamada, H. Yajima, T. Arakawa, and Y. Kokubun, “InGaAs/InAlAs multiple quantum well Mach-Zehnder modulator with single microring resonator,” Jpn. J. Appl. Phys.51(2), 02BG01 (2012).
[CrossRef]

Kato, T.

T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
[CrossRef]

T. Kato and Y. Kokubun, “Optimum coupling coefficients in second-order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol.24(2), 991–999 (2006).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
[CrossRef]

Kelderman, H.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

Khan, M. H.

Kim, D.-H.

J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
[CrossRef]

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Klein, E.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

Kokubun, Y.

H. Kaneshige, Y. Ueyama, H. Yamada, H. Yajima, T. Arakawa, and Y. Kokubun, “InGaAs/InAlAs multiple quantum well Mach-Zehnder modulator with single microring resonator,” Jpn. J. Appl. Phys.51(2), 02BG01 (2012).
[CrossRef]

T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring resonator wavelength tunable filter using five-layer asymmetric coupled quantum well,” J. Lightwave Technol.29(16), 2387–2393 (2011).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
[CrossRef]

T. Kato and Y. Kokubun, “Optimum coupling coefficients in second-order series-coupled ring resonator for nonblocking wavelength channel switch,” J. Lightwave Technol.24(2), 991–999 (2006).
[CrossRef]

Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
[CrossRef]

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
[CrossRef]

S. Suzuki, Y. Kokubun, and S. T. Chu; “Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter,” J. Lightwave Technol.20(8), 1525–1529 (2002).
[CrossRef]

Kriezis, E. E.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
[CrossRef]

Kwong, D.-L.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Lee, S.-S.

J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
[CrossRef]

Lee, Y. T.

Li, C.

Liow, T.-Y.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Lo, G.-Q.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Lucas, L.

R. Grover, Member, IEEET. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

Luo, X.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Madsen, C. K.

C. K. Madsen and J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol.14(3), 437–447 (1996).
[CrossRef]

Makino, T.

Matteo, A. M.

G. Barbarossa, A. M. Matteo, and M. N. Armenise, “Theoretical analysis of triple-coupler ring-based optitacl guided-wave resonator,” J. Lightwave Technol.13(2), 148–157 (1995).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Mizuno, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Nakano, Y.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Ni, C.-Y.

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

Oguma, M.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Orta, R.

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Pang, J. P.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Poon, A. W.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007).
[CrossRef] [PubMed]

Qi, M.

Qiu, C.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Qiu, H.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Ram, R. J.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

Raptis, N.

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

Rascone, R.

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

Ravindran, S.

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Savi, P.

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

Seiferth, F.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Shen, H.

Shibata, T.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Simos, H.

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

Smith, H. I.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

Song, J.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Song, J.-H.

J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
[CrossRef]

Soref, R.

Sugiyama, M.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Suzuki, K.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Suzuki, S.

Syvridis, D.

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

Tada, K.

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Takahashi, H.

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Toya, T.

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Trinchero, D.

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

Tsilipakos, O.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
[CrossRef]

Ueyama, Y.

H. Kaneshige, Y. Ueyama, H. Yamada, H. Yajima, T. Arakawa, and Y. Kokubun, “InGaAs/InAlAs multiple quantum well Mach-Zehnder modulator with single microring resonator,” Jpn. J. Appl. Phys.51(2), 02BG01 (2012).
[CrossRef]

Ushigome, M.

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

Van, V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Wang, T.-J.

T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007).
[CrossRef]

Wang, W.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Wang, Z.

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Wilson, R. A.

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Xiao, S.

Yajima, H.

H. Kaneshige, Y. Ueyama, H. Yamada, H. Yajima, T. Arakawa, and Y. Kokubun, “InGaAs/InAlAs multiple quantum well Mach-Zehnder modulator with single microring resonator,” Jpn. J. Appl. Phys.51(2), 02BG01 (2012).
[CrossRef]

Yamada, H.

H. Kaneshige, Y. Ueyama, H. Yamada, H. Yajima, T. Arakawa, and Y. Kokubun, “InGaAs/InAlAs multiple quantum well Mach-Zehnder modulator with single microring resonator,” Jpn. J. Appl. Phys.51(2), 02BG01 (2012).
[CrossRef]

Yamagata, S.

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
[CrossRef]

Yamaguchi, K.

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

Yanagase, Y.

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
[CrossRef]

Yang, J.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Yioultsis, T. V.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
[CrossRef]

Yu, M.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

Yu, P.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Zhao, J. H.

C. K. Madsen and J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol.14(3), 437–447 (1996).
[CrossRef]

Zhao, Y.

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

Zhou, L.

Appl. Phys. Lett. (1)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Electron. Lett. (1)

Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett.39(12), 922–924 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (14)

R. Orta, P. Savi, R. Rascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett.7(12), 1447–1449 (1995).
[CrossRef]

J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett.12(3), 320–322 (2000).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

R. Grover, Member, IEEET. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, and P.-T. Ho, “A tunable GaInAsP–InP optical microring notch filter,” IEEE Photon. Technol. Lett.16(2), 467–469 (2004).
[CrossRef]

H. Simos, A. Bogris, N. Raptis, and D. Syvridis, “Dynamic properties of a WDM switching module based on active microring resonators,” IEEE Photon. Technol. Lett.22(4), 206–208 (2010).
[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

K. Suzuki, T. Mizuno, M. Oguma, T. Shibata, H. Takahashi, Y. Hibino, and A. Himeno, “Low loss fully reconfigurable wavelength-selective optical 1× N switch based on transversal filter configuration using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett.16(6), 1480–1482 (2004).
[CrossRef]

Y. Goebuchi, T. Ka, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photon. Technol. Lett.18(3), 538–540 (2006).
[CrossRef]

S.-J. Chang, C.-Y. Ni, Z. Wang, and Y.-J. Chen, “A compact and low power consumption optical switch based on microrings,” IEEE Photon. Technol. Lett.20(12), 1021–1023 (2008).
[CrossRef]

T.-J. Wang and C.-H. Chu, “Wavelength-tunable microring resonator on lithium niobate,” IEEE Photon. Technol. Lett.19(23), 1904–1906 (2007).
[CrossRef]

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett.17(2), 336–338 (2005).
[CrossRef]

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision tunable silicon compatible microring filters,” IEEE Photon. Technol. Lett.20(20), 1739–1741 (2008).
[CrossRef]

T. Hu, W. Wang, C. Qiu, P. Yu, H. Qiu, Y. Zhao, X. Jiang, and J. Yang, “Thermally tunable filters based on third-order microring resonators for WDM applications,” IEEE Photon. Technol. Lett.24(6), 524–526 (2012).
[CrossRef]

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012).
[CrossRef]

J. Appl. Phys. (1)

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106(9), 093109 (2009).
[CrossRef]

J. Lightwave Technol. (6)

Jpn. J. Appl. Phys. (6)

T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs five-layer asymmetric coupled quantum well exhibiting giant electrorefractive index change,” Jpn. J. Appl. Phys.50, 032204 (2011).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Experimental study of optimum coupling efficiency of double series coupled microring resonator,” Jpn. J. Appl. Phys.45(10A), 7741–7745 (2006).
[CrossRef]

H. Kaneshige, Y. Ueyama, H. Yamada, H. Yajima, T. Arakawa, and Y. Kokubun, “InGaAs/InAlAs multiple quantum well Mach-Zehnder modulator with single microring resonator,” Jpn. J. Appl. Phys.51(2), 02BG01 (2012).
[CrossRef]

T. Kato, Y. Goebuchi, and Y. Kokubun, “Improvement of switching characteristics of hitless wavelength-selective switch with double-series-coupled microring resonators,” Jpn. J. Appl. Phys.46(6A), 3428–3432 (2007).
[CrossRef]

J.-H. Song, D.-H. Kim, and S.-S. Lee, “Polymeric microring resonator enabling variable extinction ratio,” Jpn. J. Appl. Phys.46(7), L145–L147 (2007).
[CrossRef]

T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low-voltage Mach-Zehnder modulator with InGaAs/InAlAs five-layer asymmetric coupled quantum well,” Jpn. J. Appl. Phys.51, 042203 (2012).
[CrossRef]

Opt. Express (3)

Phys. Rev. B Condens. Matter (1)

S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B Condens. Matter43(12), 9649–9661 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge absorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Other (2)

M. Born and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University Press, 1999), p.838.

H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch using multiple quantum well second-order series coupled microring resonators,” Photonics in Switching (PS) 2012, Th-S24–O07 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic view of wavelength-selective switch with second-order series-coupled microring resonator.

Fig. 2
Fig. 2

Calculation model for series-coupled ring resonator. (a) Coupling region. (b) Ring resonator region.

Fig. 3
Fig. 3

Calculation model for transfer function of second-order series-coupled microring.

Fig. 4
Fig. 4

Theoretical hitless spectral response of drop port for WSS with device parameters described in Sect. 4.1.

Fig. 5
Fig. 5

Schematic top view of second-order series-coupled microring WSS and its design parameters.

Fig. 6
Fig. 6

Schematic cross-sectional views of (a) waveguide and (b) coupling region.

Fig. 7
Fig. 7

Schematic band diagram of InGaAs/InAlAs FACQW. The numbers denote the thickness of each layer in monolayer (ML) (1 ML = 0.294 nm).

Fig. 8
Fig. 8

(a) Optical microscopic image of top of fabricated WSS. (b) Scanning electron microscopic (SEM) image of waveguides of another WSS after ICT-RIE, fabricated by same process as that used for device with parameters in Table 1. (c) SEM image of cross section of coupler between microring and busline.

Fig. 9
Fig. 9

(a) Schematic single-microring resonator used for evaluating electrorefractive index change in core layer of the microring and change in coupling efficiency in directional couplers. (b) Measured drop-port spectrum responses of single-microring resonator with same waveguide structure as WSS for TE-polarized input light under various reverse biases.

Fig. 10
Fig. 10

(a) Evaluated refractive index change in core layer of microring waveguide Δncore at various wavelengths in the region around 1550 nm as a function of applied dc reverse voltage Va. (b) Measured dependence of coupling efficiencies Kb1 and Kb2 of single-microring resonator on applied reverse voltage. Solid lines denote quadratic fitting curves.

Fig. 11
Fig. 11

(a) Measured drop port spectrum responses of second-order series-coupled microring resonators. (b) Comparison of drop-port spectrum responses for single and second-order series-coupled microring resonators.

Fig. 12
Fig. 12

Theoretical switching characteristics calculated using parameters in Table 2 and change in refractive index of the MQW core layer in Fig. 10(a).

Tables (2)

Tables Icon

Table 1 Designed Parameters of Proposed WSS.

Tables Icon

Table 2 Evaluated Coupling Efficiencies of WSS.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

[ E c1 E c2 ]=η[ t j K j K t ][ E c1 E c2 ],
[ E c2 E c2 ]= C t [ E c1 E c1 ],
C t = j K [ t 1/η η(t+K) t ]= j K [ 1K 1/η η 1K ].
C b = j 1t [ t η 1/η t ].
[ E r2 E r1 ]=R[ E r2 E r1 ]  and
R=[ a 2 1 exp(jβ l 2 ) 0 0 a 1 exp(jβ l 1 ) ],
[ E A E D ]= C t2 R r2 1 C b1 R r1 C t1 [ E I E T ] =j[ 1 K b2 K b2 1 η K b2 η K b2 1 K b2 K b2 ][ a 2 exp(jβ L 2 2 ) 0 0 a 2 exp(jβ L 2 2 ) ]j[ 1 K r K r 1 η K r η K r 1 K r K r ] [ 1 a 1 exp(jβ L 1 2 ) 0 0 a 1 exp(jβ L 1 2 ) ]j[ 1 K b1 K b1 1 η K b1 η K b1 1 K b1 K b1 ][ E I E T ] =[ M 11 M 12 M 21 M 22 ][ E I E T ],
E T E I = M 11 M 12 .
E D E I = M 12 M 21 M 11 M 22 M 12 .
T T = 1 K b1 a 2 +(1 K b2 ) 2 (1 K b1 )(1 K b2 ) a + 4 (1 K b1 )(1 K b2 ) a sin 2 βL ( 1 a (1 K b1 )(1 K b2 ) ) 2 + 4 (1 K b1 )(1 K b2 ) a sin 2 βL  and
T D = K b1 K b2 a ( 1 a (1 K b1 )(1 K b2 ) ) 2 + 4 (1 K b1 )(1 K b1 ) a sin 2 βL ,
T T | sin 2 βL=0 T T | sin 2 βL=1 = ( 1 K b1 a 1 K b2 ) 2 ( 1+a ( 1 K b1 )( 1 K b2 ) ) 2 ( 1 K b1 +a 1 K b2 ) 2 ( 1a ( 1 K b1 )( 1 K b2 ) ) 2  and
T D | sin 2 βL=1 T D | sin 2 βL=0 = ( 1a ( 1 K b1 )( 1 K b2 ) ) 2 ( 1+a ( 1 K b1 )( 1 K b2 ) ) 2 ,
FWHM= 2 λ 0 π n eq L asin 1a ( 1 K b1 )( 1 K b2 ) 2 a 2 ( 1 K b1 )( 1 K b2 ) 4 .
Shape factor= 1dB bandwidth 10dB bandwidth ,

Metrics