Abstract

In this report, the optomechanical transductions in both single and two side-coupled wheel resonators are investigated. In the single resonator, the optomechanical transduction sensitivity is determined by the optical and mechanical quality factors of the resonator. In the coupled resonators, the optomechanical transduction is related to the energy distribution in the two resonators, which is strongly dependent on the input detuning. Compared to a single resonator, the coupled resonators can still provide very sensitive optomechanical transduction even if the optical and mechanical quality factors of one resonator are degraded.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
    [Crossref]
  2. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
    [Crossref]
  3. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
    [Crossref] [PubMed]
  4. X. Sun, K. Y. Fong, W. H. P. Pernice, and H. X. Tang, “GHz optomechanical resonators with high mechanical Q factor in air,” Opt. Express 19, 22316–22321 (2011).
    [Crossref] [PubMed]
  5. O. Basarir, S. Bramhavar, and K. L. Ekinci, “Monolithic integration of a nanomechanical resonator to an optical microdisk cavity,” Opt. Express 20, 4272–4279 (2012).
    [Crossref] [PubMed]
  6. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).
    [Crossref] [PubMed]
  7. O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12, 534–539 (2012).
    [Crossref] [PubMed]
  8. K. Srinivasan, H. X. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
    [Crossref] [PubMed]
  9. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations(parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
    [Crossref]
  10. S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express 19, 24522–24529 (2011).
    [Crossref] [PubMed]
  11. W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express 20, 15991–15996 (2012).
    [Crossref] [PubMed]
  12. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
    [Crossref] [PubMed]
  13. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystal,” Nature 462, 78–82 (2009).
    [Crossref] [PubMed]
  14. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
    [Crossref] [PubMed]
  15. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
    [Crossref] [PubMed]
  16. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
    [Crossref]
  17. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
    [Crossref]
  18. C. Huang, J. Fan, R. Zhang, and L. Zhu, “Internal frequency mixing in a single optomechanical resonator,” Appl. Phys. Lett. 101, 231112 (2012).
    [Crossref]
  19. X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators as gigahertz frequencies,” Appl. Phys. Lett. 100, 173116 (2012).
    [Crossref]
  20. C. Huang, J. Fan, and L. Zhu, “Dynamic nonlinear thermal optical effects in coupled ring resonators,” AIP Advances 2, 032131 (2012).
    [Crossref]

2012 (9)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Monolithic integration of a nanomechanical resonator to an optical microdisk cavity,” Opt. Express 20, 4272–4279 (2012).
[Crossref] [PubMed]

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).
[Crossref] [PubMed]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12, 534–539 (2012).
[Crossref] [PubMed]

W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express 20, 15991–15996 (2012).
[Crossref] [PubMed]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

C. Huang, J. Fan, R. Zhang, and L. Zhu, “Internal frequency mixing in a single optomechanical resonator,” Appl. Phys. Lett. 101, 231112 (2012).
[Crossref]

X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators as gigahertz frequencies,” Appl. Phys. Lett. 100, 173116 (2012).
[Crossref]

C. Huang, J. Fan, and L. Zhu, “Dynamic nonlinear thermal optical effects in coupled ring resonators,” AIP Advances 2, 032131 (2012).
[Crossref]

2011 (3)

2010 (1)

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]

2009 (4)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystal,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (1)

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations(parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

2005 (1)

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

Aksyuk, V.

K. Srinivasan, H. X. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref] [PubMed]

Anetsberger, G.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Arcizet, O.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Barnard, A.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Basarir, O.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12, 534–539 (2012).
[Crossref] [PubMed]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Monolithic integration of a nanomechanical resonator to an optical microdisk cavity,” Opt. Express 20, 4272–4279 (2012).
[Crossref] [PubMed]

Bhave, S. A.

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Bramhavar, S.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12, 534–539 (2012).
[Crossref] [PubMed]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Monolithic integration of a nanomechanical resonator to an optical microdisk cavity,” Opt. Express 20, 4272–4279 (2012).
[Crossref] [PubMed]

Camacho, R.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystal,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

Carmon, T.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations(parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

Chan, J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystal,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

Chang, D.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

Davanco, M.

K. Srinivasan, H. X. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref] [PubMed]

Eichenfield, M.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystal,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

Ekinci, K. L.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12, 534–539 (2012).
[Crossref] [PubMed]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Monolithic integration of a nanomechanical resonator to an optical microdisk cavity,” Opt. Express 20, 4272–4279 (2012).
[Crossref] [PubMed]

Fan, J.

C. Huang, J. Fan, R. Zhang, and L. Zhu, “Internal frequency mixing in a single optomechanical resonator,” Appl. Phys. Lett. 101, 231112 (2012).
[Crossref]

C. Huang, J. Fan, and L. Zhu, “Dynamic nonlinear thermal optical effects in coupled ring resonators,” AIP Advances 2, 032131 (2012).
[Crossref]

Fong, K. Y.

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

Huang, C.

C. Huang, J. Fan, and L. Zhu, “Dynamic nonlinear thermal optical effects in coupled ring resonators,” AIP Advances 2, 032131 (2012).
[Crossref]

C. Huang, J. Fan, R. Zhang, and L. Zhu, “Internal frequency mixing in a single optomechanical resonator,” Appl. Phys. Lett. 101, 231112 (2012).
[Crossref]

Jiang, W. C.

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Kippenberg, T. J.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[Crossref] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations(parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

Kotthaus, J. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Lin, Q.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express 20, 15991–15996 (2012).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Lipson, M.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

Lu, X.

Manipatruni, S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

McEuen, P.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Miao, H. X.

K. Srinivasan, H. X. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref] [PubMed]

Painter, O.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystal,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Pernice, W. H. P.

Poot, M.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).
[Crossref] [PubMed]

Rakher, M. T.

K. Srinivasan, H. X. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref] [PubMed]

Riviere, R.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Rokhsari, H.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations(parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

Rosenberg, J.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Scherer, A.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

Schliesser, A.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Sridaran, S.

Srinivasan, K.

K. Srinivasan, H. X. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref] [PubMed]

Sun, X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).
[Crossref] [PubMed]

X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators as gigahertz frequencies,” Appl. Phys. Lett. 100, 173116 (2012).
[Crossref]

X. Sun, K. Y. Fong, W. H. P. Pernice, and H. X. Tang, “GHz optomechanical resonators with high mechanical Q factor in air,” Opt. Express 19, 22316–22321 (2011).
[Crossref] [PubMed]

Tallur, S.

Tang, H. X.

X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators as gigahertz frequencies,” Appl. Phys. Lett. 100, 173116 (2012).
[Crossref]

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).
[Crossref] [PubMed]

X. Sun, K. Y. Fong, W. H. P. Pernice, and H. X. Tang, “GHz optomechanical resonators with high mechanical Q factor in air,” Opt. Express 19, 22316–22321 (2011).
[Crossref] [PubMed]

Unterreithmeier, Q. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Vahala, K. J.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystal,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[Crossref] [PubMed]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations(parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

Weig, E. M.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Wiederhecker, G. S.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Wong, C. W.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).
[Crossref] [PubMed]

Zhang, J.

Zhang, M.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Zhang, R.

C. Huang, J. Fan, R. Zhang, and L. Zhu, “Internal frequency mixing in a single optomechanical resonator,” Appl. Phys. Lett. 101, 231112 (2012).
[Crossref]

Zhang, X.

X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators as gigahertz frequencies,” Appl. Phys. Lett. 100, 173116 (2012).
[Crossref]

Zheng, J.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).
[Crossref] [PubMed]

Zhu, L.

C. Huang, J. Fan, R. Zhang, and L. Zhu, “Internal frequency mixing in a single optomechanical resonator,” Appl. Phys. Lett. 101, 231112 (2012).
[Crossref]

C. Huang, J. Fan, and L. Zhu, “Dynamic nonlinear thermal optical effects in coupled ring resonators,” AIP Advances 2, 032131 (2012).
[Crossref]

AIP Advances (1)

C. Huang, J. Fan, and L. Zhu, “Dynamic nonlinear thermal optical effects in coupled ring resonators,” AIP Advances 2, 032131 (2012).
[Crossref]

Appl. Phys. Lett. (2)

C. Huang, J. Fan, R. Zhang, and L. Zhu, “Internal frequency mixing in a single optomechanical resonator,” Appl. Phys. Lett. 101, 231112 (2012).
[Crossref]

X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators as gigahertz frequencies,” Appl. Phys. Lett. 100, 173116 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations(parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006).
[Crossref]

Nano Lett. (3)

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).
[Crossref] [PubMed]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12, 534–539 (2012).
[Crossref] [PubMed]

K. Srinivasan, H. X. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Nat. Phys. (1)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Nature (2)

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystal,” Nature 462, 78–82 (2009).
[Crossref] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rev. Lett. (3)

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup. VOA: Variable Optical Attenuator; FPC: Fiber Porlarization Controller; PD: Photodetector; ESA: Electrical Spectrum Analyzer; DUT: Device Under Test. A tapered fiber is used to couple light into and out of the resonator, and it is parked on the nanostrings. The experiments are conducted under vacuum. Both single wheel resonator(DUT1) and two side-coupled wheel resonators(DUT2) are investigated. (b) SEM image of DUT1. (c) SEM image of DUT2.

Fig. 2
Fig. 2

Measurements for DUT1. (a) Cavity ransmision spectra with different taper couplings. The transmission spectrum denoted by the blue circle with red line fitting is obtained when the taper is 400nm away from the resonator. The transmission spectrum denoted by the black square with green line fitting is obtained when the taper touches the resonator. (b) RF spectra of the breathing mode when the taper is away from (blue circle) and in contact with the resonator (black square).

Fig. 3
Fig. 3

Measurements for DUT2. (a) Cavity transmission spectra in a wide wavelength range. The transmission spectrum colored in blue and red is taken when the taper couples to the resonator a. The transmission spectrum colored in black and green is taken when the taper couples to the resonator b. The resonance dips colored in green and red represent the coupled resonance. (b) RF spectra at uncoupled resonances when the taper separately couples to resonator a (blue circle) and resonator b (black circle).

Fig. 4
Fig. 4

Measurements for DUT2. (a) Experimentally recorded cavity transmission spectrum (blue circle) with theoretical fitting (red line) under input power of 4μW. Qa = 9 × 105, Qb = 5 × 105. The taper is 400nm away from the device. (b) Cavity transmission with thermal effects under input power of 60μW. I,II and III represent three regions as the wavelength is swept across the resonances during the RF measurement. The subset shows the simulated stored energy distribution in the coupled resonators with aribitrary unit. The blue/red line represents the stored energy in resonator a/b. (c) PSD peak values of the RF spectrum for the breathing modes in the two resonators. fa and fb represent the frequencies of the breathing modes for the two resonators. (d–f) RF spectra at the input wavelength of 1572.56nm(d), 1572.66nm(e) and 1572.90nm(f).

Fig. 5
Fig. 5

Measurements for DUT2. (a) Cavity transmission spectrum when the taper is in contact with the resonator b. (b) RF spectra of the breathing modes when the taper is away from (blue circle) and in contact with the resonator b (black circle). (c): RF spectra of the breathing modes when the taper is away from (blue circle) and in contact with the resonator a (black circle).

Metrics