I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref]
[PubMed]
E. Tajahuerce, O. Matoba, Y. Frauel, M. A. Castro, and B. Javidi, “New approaches to 3D image recognition,” Proc. SPIE 81, 170–185 (2001).
B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New support vector algorithms,” Neural Comput. 12(5), 1207–1245 (2000).
[Crossref]
[PubMed]
V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Neural Netw. 10(5), 988–999 (1999).
[Crossref]
[PubMed]
I. Barman, N. C. Dingari, N. Rajaram, J. W. Tunnell, R. R. Dasari, and M. S. Feld, “Rapid and accurate determination of tissue optical properties using least-squares support vector machines,” Biomed. Opt. Express 2(3), 592–599 (2011).
[Crossref]
[PubMed]
I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref]
[PubMed]
B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New support vector algorithms,” Neural Comput. 12(5), 1207–1245 (2000).
[Crossref]
[PubMed]
E. Tajahuerce, O. Matoba, Y. Frauel, M. A. Castro, and B. Javidi, “New approaches to 3D image recognition,” Proc. SPIE 81, 170–185 (2001).
I. Barman, N. C. Dingari, N. Rajaram, J. W. Tunnell, R. R. Dasari, and M. S. Feld, “Rapid and accurate determination of tissue optical properties using least-squares support vector machines,” Biomed. Opt. Express 2(3), 592–599 (2011).
[Crossref]
[PubMed]
I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref]
[PubMed]
I. Barman, N. C. Dingari, N. Rajaram, J. W. Tunnell, R. R. Dasari, and M. S. Feld, “Rapid and accurate determination of tissue optical properties using least-squares support vector machines,” Biomed. Opt. Express 2(3), 592–599 (2011).
[Crossref]
[PubMed]
I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref]
[PubMed]
I. Barman, N. C. Dingari, N. Rajaram, J. W. Tunnell, R. R. Dasari, and M. S. Feld, “Rapid and accurate determination of tissue optical properties using least-squares support vector machines,” Biomed. Opt. Express 2(3), 592–599 (2011).
[Crossref]
[PubMed]
I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref]
[PubMed]
E. Tajahuerce, O. Matoba, Y. Frauel, M. A. Castro, and B. Javidi, “New approaches to 3D image recognition,” Proc. SPIE 81, 170–185 (2001).
E. Tajahuerce, O. Matoba, Y. Frauel, M. A. Castro, and B. Javidi, “New approaches to 3D image recognition,” Proc. SPIE 81, 170–185 (2001).
I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref]
[PubMed]
E. Tajahuerce, O. Matoba, Y. Frauel, M. A. Castro, and B. Javidi, “New approaches to 3D image recognition,” Proc. SPIE 81, 170–185 (2001).
B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New support vector algorithms,” Neural Comput. 12(5), 1207–1245 (2000).
[Crossref]
[PubMed]
B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New support vector algorithms,” Neural Comput. 12(5), 1207–1245 (2000).
[Crossref]
[PubMed]
E. Tajahuerce, O. Matoba, Y. Frauel, M. A. Castro, and B. Javidi, “New approaches to 3D image recognition,” Proc. SPIE 81, 170–185 (2001).
V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Neural Netw. 10(5), 988–999 (1999).
[Crossref]
[PubMed]
B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New support vector algorithms,” Neural Comput. 12(5), 1207–1245 (2000).
[Crossref]
[PubMed]
I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref]
[PubMed]
C. F. Hester and D. Casasent, “Multivariant technique for multiclass pattern recognition,” Appl. Opt. 19(11), 1758–1761 (1980).
[Crossref]
[PubMed]
B. V. K. V. Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31(23), 4773–4801 (1992).
[Crossref]
[PubMed]
I. Kypraios, P. Lei, P. M. Birch, R. C. D. Young, and C. R. Chatwin, “Performance assessment of the modified-hybrid optical neural network filter,” Appl. Opt. 47(18), 3378–3389 (2008).
[Crossref]
[PubMed]
V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Neural Netw. 10(5), 988–999 (1999).
[Crossref]
[PubMed]
B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, “New support vector algorithms,” Neural Comput. 12(5), 1207–1245 (2000).
[Crossref]
[PubMed]
E. Tajahuerce, O. Matoba, Y. Frauel, M. A. Castro, and B. Javidi, “New approaches to 3D image recognition,” Proc. SPIE 81, 170–185 (2001).
B. Javidi, Image Recognition and Classification: Algorithms, Systems, and Applications (Marcel Dekker, Inc., 2002).
J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
B. V. K. V. Kumar, A. Mahalanobis, and R. D. Juday, Correlation Pattern Recognition (Cambridge University, 2005).
B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond (MIT, Cambridge, MA, 2002)
T. C. Poon, Digital Holography and Three Dimensional Display: Principles and Applications (Springer, New York, 2006), pp. 145–168.
C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).