Abstract

Attenuation coefficient measurements for the propagation of bandedge luminescence are made on individual ZnO nanowires by combining the localized excitation capability of a scanning electron microscope (SEM) with near-field scanning optical microscopy (NSOM) to record the distribution and intensity of wave-guided emission. Measurements were made for individual nanostructures with triangular cross-sections ranging in diameter from 680 to 2300 nm. The effective attenuation coefficient shows an inverse dependence on nanowire diameter (d−1), indicating scattering losses due to non-ideal waveguiding behavior.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Könenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys. Lett.85(24), 6004–6006 (2004).
    [CrossRef]
  2. J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett.6(8), 1719–1722 (2006).
    [CrossRef] [PubMed]
  3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
    [CrossRef] [PubMed]
  4. M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett.93(5), 051101 (2008).
    [CrossRef]
  5. P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006).
    [CrossRef]
  6. M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
    [CrossRef] [PubMed]
  7. Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter16(25), R829–R858 (2004).
    [CrossRef]
  8. X. Wang, J. Song, and Z. L. Wang, “Single crystal nanocastles of ZnO,” Chem. Phys. Lett.424(1-3), 86–90 (2006).
    [CrossRef]
  9. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
    [CrossRef] [PubMed]
  10. X. D. Wang, J. H. Song, and Z. L. Wang, “Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices,” J. Mater. Chem.17(8), 711–720 (2007).
    [CrossRef]
  11. N. M. Haegel, D. J. Chisholm, and R. A. Cole, “Imaging transport in nanowires using near-field detection of light,” J. Cryst. Growth352(1), 218–223 (2012).
    [CrossRef]
  12. N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009).
    [CrossRef]
  13. L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.98(13), 132104 (2011).
    [CrossRef]
  14. Y. S. Park and J. R. Schneider, “Index of refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968).
    [CrossRef]
  15. A. M. Schwartzberg, S. Aloni, T. Kuykendall, P. J. Schuck, and J. J. Urban, “Optical cavity characterization in nanowires via self-generated broad-band emission,” Opt. Express19(9), 8903–8911 (2011).
    [CrossRef] [PubMed]
  16. Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express19(25), 25528–25534 (2011).
    [CrossRef] [PubMed]
  17. M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
    [CrossRef]

2012 (1)

N. M. Haegel, D. J. Chisholm, and R. A. Cole, “Imaging transport in nanowires using near-field detection of light,” J. Cryst. Growth352(1), 218–223 (2012).
[CrossRef]

2011 (3)

2010 (1)

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

2009 (2)

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009).
[CrossRef]

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

2008 (1)

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett.93(5), 051101 (2008).
[CrossRef]

2007 (1)

X. D. Wang, J. H. Song, and Z. L. Wang, “Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices,” J. Mater. Chem.17(8), 711–720 (2007).
[CrossRef]

2006 (3)

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006).
[CrossRef]

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett.6(8), 1719–1722 (2006).
[CrossRef] [PubMed]

X. Wang, J. Song, and Z. L. Wang, “Single crystal nanocastles of ZnO,” Chem. Phys. Lett.424(1-3), 86–90 (2006).
[CrossRef]

2004 (3)

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter16(25), R829–R858 (2004).
[CrossRef]

R. Könenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys. Lett.85(24), 6004–6006 (2004).
[CrossRef]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

1968 (1)

Y. S. Park and J. R. Schneider, “Index of refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968).
[CrossRef]

Aloni, S.

Al-Suleiman, M.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Baird, L.

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.98(13), 132104 (2011).
[CrossRef]

Bakin, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Bao, J.

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett.93(5), 051101 (2008).
[CrossRef]

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett.6(8), 1719–1722 (2006).
[CrossRef] [PubMed]

Behrends, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Boukos, N.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Cao, B. Q.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Capasso, F.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett.93(5), 051101 (2008).
[CrossRef]

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett.6(8), 1719–1722 (2006).
[CrossRef] [PubMed]

Che Mofor, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Chisholm, D. J.

N. M. Haegel, D. J. Chisholm, and R. A. Cole, “Imaging transport in nanowires using near-field detection of light,” J. Cryst. Growth352(1), 218–223 (2012).
[CrossRef]

Cole, R. A.

N. M. Haegel, D. J. Chisholm, and R. A. Cole, “Imaging transport in nanowires using near-field detection of light,” J. Cryst. Growth352(1), 218–223 (2012).
[CrossRef]

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.98(13), 132104 (2011).
[CrossRef]

Crawford, M. H.

Cross, K. C.

Czekalla, C.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

El-Shaer, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Fathololoumi, S.

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Fetzer, C. M.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009).
[CrossRef]

Figiel, J. J.

Frenzen, C. L.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009).
[CrossRef]

Goldberger, J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Grundmann, M.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Guinard, J.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Haegel, N. M.

N. M. Haegel, D. J. Chisholm, and R. A. Cole, “Imaging transport in nanowires using near-field detection of light,” J. Cryst. Growth352(1), 218–223 (2012).
[CrossRef]

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.98(13), 132104 (2011).
[CrossRef]

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Johnson, J. C.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

King, R. R.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009).
[CrossRef]

Koleske, D. D.

Könenkamp, R.

R. Könenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys. Lett.85(24), 6004–6006 (2004).
[CrossRef]

Kuykendall, T.

Kwack, H. S.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Law, M.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Le Si Dang, D.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Lee, S. R.

Li, Q.

Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express19(25), 25528–25534 (2011).
[CrossRef] [PubMed]

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.98(13), 132104 (2011).
[CrossRef]

Lorenz, M.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Mi, Z.

Mills, T. J.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009).
[CrossRef]

Muller, S.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett.93(5), 051101 (2008).
[CrossRef]

Nur, O.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Ong, C. P.

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.98(13), 132104 (2011).
[CrossRef]

Park, Y. S.

Y. S. Park and J. R. Schneider, “Index of refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968).
[CrossRef]

Pauzauskie, P. J.

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006).
[CrossRef]

Postels, B.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Ren, Z. F.

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett.6(8), 1719–1722 (2006).
[CrossRef] [PubMed]

Ronning, C.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett.93(5), 051101 (2008).
[CrossRef]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Saykally, R. J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Scandrett, C.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009).
[CrossRef]

Schlegel, C.

R. Könenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys. Lett.85(24), 6004–6006 (2004).
[CrossRef]

Schneider, J. R.

Y. S. Park and J. R. Schneider, “Index of refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968).
[CrossRef]

Schuck, P. J.

Schwartzberg, A. M.

Sirbuly, D. J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Song, J.

X. Wang, J. Song, and Z. L. Wang, “Single crystal nanocastles of ZnO,” Chem. Phys. Lett.424(1-3), 86–90 (2006).
[CrossRef]

Song, J. H.

X. D. Wang, J. H. Song, and Z. L. Wang, “Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices,” J. Mater. Chem.17(8), 711–720 (2007).
[CrossRef]

Talin, A. A.

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.98(13), 132104 (2011).
[CrossRef]

Talmadge, M.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009).
[CrossRef]

Travlos, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Urban, J. J.

Waag, A.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Wang, G. T.

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.98(13), 132104 (2011).
[CrossRef]

Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express19(25), 25528–25534 (2011).
[CrossRef] [PubMed]

Wang, X.

X. Wang, J. Song, and Z. L. Wang, “Single crystal nanocastles of ZnO,” Chem. Phys. Lett.424(1-3), 86–90 (2006).
[CrossRef]

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett.6(8), 1719–1722 (2006).
[CrossRef] [PubMed]

Wang, X. D.

X. D. Wang, J. H. Song, and Z. L. Wang, “Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices,” J. Mater. Chem.17(8), 711–720 (2007).
[CrossRef]

Wang, Z. L.

X. D. Wang, J. H. Song, and Z. L. Wang, “Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices,” J. Mater. Chem.17(8), 711–720 (2007).
[CrossRef]

X. Wang, J. Song, and Z. L. Wang, “Single crystal nanocastles of ZnO,” Chem. Phys. Lett.424(1-3), 86–90 (2006).
[CrossRef]

Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter16(25), R829–R858 (2004).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Westlake, K. R.

Willander, M.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Word, R. C.

R. Könenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys. Lett.85(24), 6004–6006 (2004).
[CrossRef]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, L. L.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Yang, P.

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yoon, H.

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009).
[CrossRef]

Zhao, Q. X.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Zimmermann, G.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Zimmler, M. A.

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett.93(5), 051101 (2008).
[CrossRef]

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett.6(8), 1719–1722 (2006).
[CrossRef] [PubMed]

Zúñiga Pérez, J.

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

R. Könenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys. Lett.85(24), 6004–6006 (2004).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, “Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett.93(5), 051101 (2008).
[CrossRef]

L. Baird, C. P. Ong, R. A. Cole, N. M. Haegel, A. A. Talin, Q. Li, and G. T. Wang, “Transport imaging for contact-free measurements of minority carrier diffusion in GaN, GaN/AlGaN and GaN/InGaN core-shell nanowires,” Appl. Phys. Lett.98(13), 132104 (2011).
[CrossRef]

Chem. Phys. Lett. (1)

X. Wang, J. Song, and Z. L. Wang, “Single crystal nanocastles of ZnO,” Chem. Phys. Lett.424(1-3), 86–90 (2006).
[CrossRef]

J. Appl. Phys. (2)

Y. S. Park and J. R. Schneider, “Index of refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968).
[CrossRef]

N. M. Haegel, T. J. Mills, M. Talmadge, C. Scandrett, C. L. Frenzen, H. Yoon, C. M. Fetzer, and R. R. King, “Direct imaging of anisotropic minority-carrier diffusion in ordered GaInP,” J. Appl. Phys.105(2), 023711 (2009).
[CrossRef]

J. Cryst. Growth (1)

N. M. Haegel, D. J. Chisholm, and R. A. Cole, “Imaging transport in nanowires using near-field detection of light,” J. Cryst. Growth352(1), 218–223 (2012).
[CrossRef]

J. Mater. Chem. (1)

X. D. Wang, J. H. Song, and Z. L. Wang, “Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices,” J. Mater. Chem.17(8), 711–720 (2007).
[CrossRef]

J. Phys. Condens. Matter (1)

Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter16(25), R829–R858 (2004).
[CrossRef]

Mater. Today (1)

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today9(10), 36–45 (2006).
[CrossRef]

Nano Lett. (1)

J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett.6(8), 1719–1722 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, “Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers,” Nanotechnology20(33), 332001 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Science (2)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

M. A. Zimmler, F. Capasso, S. Muller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

ZnO nanowires dispersed horizontally on Si substrate, a) imaged at low magnification (1000X) in presence of NSOM fiber tip and b) cross sectional image of triangular nanowire at high magnification (260,000X).

Fig. 2
Fig. 2

Schematic of experimental approach illustrating electron beam incident on nanowire and area of NSOM scan.

Fig. 3
Fig. 3

300 K luminescence

Fig. 4
Fig. 4

NSOM image of light emitted from nanowire, superimposed on AFM image showing physical end of the structure. Results are shown for point source excitation locations of A) 10 μm, B) 20 μm and C) 40 μm from the end of the wire.

Fig. 5
Fig. 5

Maximum intensity in NSOM images at the end of the wire as a function of the distance from the excitation point. The number in the upper right corner is the diameter of the nanostructure, to the nearest 10 nm. The lines represent a least squares fit to the data, with the resulting value for the attenuation coefficient given in the lower left corner.

Fig. 6
Fig. 6

Attenuation coefficient as a function of diameter. Dashed line shows a least squares fit with all data equally weighted, indicating d-1.05 dependence.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 exp(αx),
#bounces unitlength = 2 4L = 2 4( d 2tanθ ) = tanθ d .

Metrics