Abstract

We report the effect of coating thickness on the sensitivity of a relative humidity (RH) sensor based on an Agarose coated photonic crystal fiber interferometer for the first time. An experimental method is demonstrated to select an optimum coating thickness to achieve the highest sensitivity for a given RH sensing range. It is shown that the Refractive Index (RI) of the coating experienced by the mode interacting with the coating depends on the thickness of the coating. It is observed that the spectral shift of the interferometer depends on both the bulk RI change and the thickness change of the Agarose coating with respect to an RH change. The RH sensitivity of the sensor has a significant dependence on the thickness of the coating and the sensor with highest sensitivity shows a linear response for RH change in the range of 40-90% RH with a humidity resolution of 0.07%RH and a fast response time of 75 ms for an RH change from 50% to 90%.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
    [CrossRef]
  2. J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol.43(7), 1301–1305 (2011).
    [CrossRef]
  3. J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys.174, 47–51 (2012).
    [CrossRef]
  4. J. Mathew, K. J. Thomas, V. P. N. Nampoori, and P. Radhakrishnan, “A comparative study of fiber optic humidity sensors based on chitosan and agarose,” Sens. Transducers J.84, 1633–1640 (2007).
  5. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]
  6. R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett.93(19), 191106 (2008).
    [CrossRef]
  7. J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett.46(19), 1341–1343 (2010).
    [CrossRef]
  8. J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol.30(8), 1150–1155 (2012).
    [CrossRef]
  9. J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron.18(5), 1553–1559 (2012).
    [CrossRef]
  10. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
    [CrossRef]
  11. D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cardenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol.28(24), 3542–3547 (2010).
    [CrossRef]
  12. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett.34(5), 617–619 (2009).
    [CrossRef] [PubMed]
  13. M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol.30(8), 1185–1189 (2012).
    [CrossRef]
  14. J. Mathew, Y. Semenova, and G. Farrell, “Polymer coated photonics crystal fiber interferometer for relative humidity sensing,” A. Ghosh, and D. Choudhury (Eds.): Proc. IConTOP–II, pp. 73–78, (2011).
  15. F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem.96(1-2), 165–172 (2003).
    [CrossRef]
  16. K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J.7(3), 409–414 (2007).
    [CrossRef]
  17. C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
    [CrossRef]
  18. M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C7(11-12), 2767–2769 (2010).
    [CrossRef]
  19. J. J. Roberts, A. Earnshaw, V. L. Ferguson, and S. J. Bryant, “Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels,” J. Biomed. Mater. Res. B Appl. Biomater.99B(1), 158–169 (2011).
    [CrossRef] [PubMed]
  20. I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in long period fiber gratings with overlay deposition,” Opt. Express13(1), 56–69 (2005).
    [CrossRef] [PubMed]
  21. J. Lu, Z. Chen, F. Pang, and T. Wang, “Theoretical analysis of fiber-optic evanescent wave sensors,” in Proceedings of IEEE Microwave Conference, (China-Japan Joint, 2008), pp.583–587, doi: 10.1109/CJMW.2008.4772500.
    [CrossRef]
  22. S. T. Lee, P. S. Kumar, K. P. Unnikrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, S. Sugunan, and P. Radhakrishnan, “Evanescent wave fibre optic sensors for trace analysis of Fe3+ in water,” Meas. Sci. Technol.14(6), 858–861 (2003).
    [CrossRef]

2012 (4)

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys.174, 47–51 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol.30(8), 1150–1155 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron.18(5), 1553–1559 (2012).
[CrossRef]

M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol.30(8), 1185–1189 (2012).
[CrossRef]

2011 (2)

J. J. Roberts, A. Earnshaw, V. L. Ferguson, and S. J. Bryant, “Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels,” J. Biomed. Mater. Res. B Appl. Biomater.99B(1), 158–169 (2011).
[CrossRef] [PubMed]

J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol.43(7), 1301–1305 (2011).
[CrossRef]

2010 (3)

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett.46(19), 1341–1343 (2010).
[CrossRef]

D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cardenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol.28(24), 3542–3547 (2010).
[CrossRef]

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C7(11-12), 2767–2769 (2010).
[CrossRef]

2009 (1)

2008 (2)

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett.93(19), 191106 (2008).
[CrossRef]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
[CrossRef]

2007 (4)

J. Mathew, K. J. Thomas, V. P. N. Nampoori, and P. Radhakrishnan, “A comparative study of fiber optic humidity sensors based on chitosan and agarose,” Sens. Transducers J.84, 1633–1640 (2007).

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J.7(3), 409–414 (2007).
[CrossRef]

2005 (1)

2003 (2)

S. T. Lee, P. S. Kumar, K. P. Unnikrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, S. Sugunan, and P. Radhakrishnan, “Evanescent wave fibre optic sensors for trace analysis of Fe3+ in water,” Meas. Sci. Technol.14(6), 858–861 (2003).
[CrossRef]

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem.96(1-2), 165–172 (2003).
[CrossRef]

2000 (1)

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

Arregui, F. J.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C7(11-12), 2767–2769 (2010).
[CrossRef]

I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in long period fiber gratings with overlay deposition,” Opt. Express13(1), 56–69 (2005).
[CrossRef] [PubMed]

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem.96(1-2), 165–172 (2003).
[CrossRef]

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

Badenes, G.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett.34(5), 617–619 (2009).
[CrossRef] [PubMed]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett.93(19), 191106 (2008).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Bariáin, C.

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

Barrera, D.

Bock, W. J.

Brabant, D.

Bryant, S. J.

J. J. Roberts, A. Earnshaw, V. L. Ferguson, and S. J. Bryant, “Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels,” J. Biomed. Mater. Res. B Appl. Biomater.99B(1), 158–169 (2011).
[CrossRef] [PubMed]

Cardenas-Sevilla, G. A.

Choi, H. Y.

Ciaurriz, Z.

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem.96(1-2), 165–172 (2003).
[CrossRef]

del Villar, I.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C7(11-12), 2767–2769 (2010).
[CrossRef]

I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in long period fiber gratings with overlay deposition,” Opt. Express13(1), 56–69 (2005).
[CrossRef] [PubMed]

Earnshaw, A.

J. J. Roberts, A. Earnshaw, V. L. Ferguson, and S. J. Bryant, “Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels,” J. Biomed. Mater. Res. B Appl. Biomater.99B(1), 158–169 (2011).
[CrossRef] [PubMed]

Eftimov, T.

Farrell, G.

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys.174, 47–51 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol.30(8), 1150–1155 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron.18(5), 1553–1559 (2012).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol.43(7), 1301–1305 (2011).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett.46(19), 1341–1343 (2010).
[CrossRef]

Ferguson, V. L.

J. J. Roberts, A. Earnshaw, V. L. Ferguson, and S. J. Bryant, “Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels,” J. Biomed. Mater. Res. B Appl. Biomater.99B(1), 158–169 (2011).
[CrossRef] [PubMed]

Fernandez-Valdivielso, C.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C7(11-12), 2767–2769 (2010).
[CrossRef]

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Finazzi, V. P.

Grattan, K. T. V.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
[CrossRef]

Hernaez, M.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C7(11-12), 2767–2769 (2010).
[CrossRef]

Jha, R.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett.34(5), 617–619 (2009).
[CrossRef] [PubMed]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett.93(19), 191106 (2008).
[CrossRef]

Kim, M. J.

Kumar, P. S.

S. T. Lee, P. S. Kumar, K. P. Unnikrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, S. Sugunan, and P. Radhakrishnan, “Evanescent wave fibre optic sensors for trace analysis of Fe3+ in water,” Meas. Sci. Technol.14(6), 858–861 (2003).
[CrossRef]

Lalanne, P.

Lee, B. H.

Lee, K. J.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J.7(3), 409–414 (2007).
[CrossRef]

Lee, S. T.

S. T. Lee, P. S. Kumar, K. P. Unnikrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, S. Sugunan, and P. Radhakrishnan, “Evanescent wave fibre optic sensors for trace analysis of Fe3+ in water,” Meas. Sci. Technol.14(6), 858–861 (2003).
[CrossRef]

López-Amo, M.

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

Magnusson, R.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J.7(3), 409–414 (2007).
[CrossRef]

Mathew, J.

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys.174, 47–51 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol.30(8), 1150–1155 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron.18(5), 1553–1559 (2012).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol.43(7), 1301–1305 (2011).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett.46(19), 1341–1343 (2010).
[CrossRef]

J. Mathew, K. J. Thomas, V. P. N. Nampoori, and P. Radhakrishnan, “A comparative study of fiber optic humidity sensors based on chitosan and agarose,” Sens. Transducers J.84, 1633–1640 (2007).

Matias, I. R.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C7(11-12), 2767–2769 (2010).
[CrossRef]

Matías, I. R.

I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in long period fiber gratings with overlay deposition,” Opt. Express13(1), 56–69 (2005).
[CrossRef] [PubMed]

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem.96(1-2), 165–172 (2003).
[CrossRef]

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

Mikulic, P.

Minkovich, V. P.

D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cardenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol.28(24), 3542–3547 (2010).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Nampoori, V. P. N.

J. Mathew, K. J. Thomas, V. P. N. Nampoori, and P. Radhakrishnan, “A comparative study of fiber optic humidity sensors based on chitosan and agarose,” Sens. Transducers J.84, 1633–1640 (2007).

S. T. Lee, P. S. Kumar, K. P. Unnikrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, S. Sugunan, and P. Radhakrishnan, “Evanescent wave fibre optic sensors for trace analysis of Fe3+ in water,” Meas. Sci. Technol.14(6), 858–861 (2003).
[CrossRef]

Oneca, M.

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem.96(1-2), 165–172 (2003).
[CrossRef]

Priambodo, P. S.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J.7(3), 409–414 (2007).
[CrossRef]

Pruneri, V.

Radhakrishnan, P.

J. Mathew, K. J. Thomas, V. P. N. Nampoori, and P. Radhakrishnan, “A comparative study of fiber optic humidity sensors based on chitosan and agarose,” Sens. Transducers J.84, 1633–1640 (2007).

S. T. Lee, P. S. Kumar, K. P. Unnikrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, S. Sugunan, and P. Radhakrishnan, “Evanescent wave fibre optic sensors for trace analysis of Fe3+ in water,” Meas. Sci. Technol.14(6), 858–861 (2003).
[CrossRef]

Rajan, G.

J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol.43(7), 1301–1305 (2011).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett.46(19), 1341–1343 (2010).
[CrossRef]

Roberts, J. J.

J. J. Roberts, A. Earnshaw, V. L. Ferguson, and S. J. Bryant, “Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels,” J. Biomed. Mater. Res. B Appl. Biomater.99B(1), 158–169 (2011).
[CrossRef] [PubMed]

Sales, S.

Semenova, Y.

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol.30(8), 1150–1155 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron.18(5), 1553–1559 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys.174, 47–51 (2012).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol.43(7), 1301–1305 (2011).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett.46(19), 1341–1343 (2010).
[CrossRef]

Smietana, M.

Sugunan, S.

S. T. Lee, P. S. Kumar, K. P. Unnikrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, S. Sugunan, and P. Radhakrishnan, “Evanescent wave fibre optic sensors for trace analysis of Fe3+ in water,” Meas. Sci. Technol.14(6), 858–861 (2003).
[CrossRef]

Sun, T.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
[CrossRef]

Thomas, K. J.

J. Mathew, K. J. Thomas, V. P. N. Nampoori, and P. Radhakrishnan, “A comparative study of fiber optic humidity sensors based on chitosan and agarose,” Sens. Transducers J.84, 1633–1640 (2007).

Unnikrishnan, K. P.

S. T. Lee, P. S. Kumar, K. P. Unnikrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, S. Sugunan, and P. Radhakrishnan, “Evanescent wave fibre optic sensors for trace analysis of Fe3+ in water,” Meas. Sci. Technol.14(6), 858–861 (2003).
[CrossRef]

Vallabhan, C. P. G.

S. T. Lee, P. S. Kumar, K. P. Unnikrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, S. Sugunan, and P. Radhakrishnan, “Evanescent wave fibre optic sensors for trace analysis of Fe3+ in water,” Meas. Sci. Technol.14(6), 858–861 (2003).
[CrossRef]

Villatoro, J.

D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cardenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol.28(24), 3542–3547 (2010).
[CrossRef]

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett.34(5), 617–619 (2009).
[CrossRef] [PubMed]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett.93(19), 191106 (2008).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Wang, P.

J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol.43(7), 1301–1305 (2011).
[CrossRef]

Wawro, D.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J.7(3), 409–414 (2007).
[CrossRef]

Yeo, T. L.

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
[CrossRef]

Zamarreño, C. R.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C7(11-12), 2767–2769 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett.93(19), 191106 (2008).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Electron. Lett. (1)

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett.46(19), 1341–1343 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron.18(5), 1553–1559 (2012).
[CrossRef]

IEEE Sens. J. (1)

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J.7(3), 409–414 (2007).
[CrossRef]

J. Biomed. Mater. Res. B Appl. Biomater. (1)

J. J. Roberts, A. Earnshaw, V. L. Ferguson, and S. J. Bryant, “Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels,” J. Biomed. Mater. Res. B Appl. Biomater.99B(1), 158–169 (2011).
[CrossRef] [PubMed]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (1)

S. T. Lee, P. S. Kumar, K. P. Unnikrishnan, V. P. N. Nampoori, C. P. G. Vallabhan, S. Sugunan, and P. Radhakrishnan, “Evanescent wave fibre optic sensors for trace analysis of Fe3+ in water,” Meas. Sci. Technol.14(6), 858–861 (2003).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (1)

J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol.43(7), 1301–1305 (2011).
[CrossRef]

Opt. Lett. (1)

Phys. Status Solidi C (1)

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C7(11-12), 2767–2769 (2010).
[CrossRef]

Sens. Actuators A Phys. (2)

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A Phys.174, 47–51 (2012).
[CrossRef]

T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A Phys.144(2), 280–295 (2008).
[CrossRef]

Sens. Actuators B Chem. (2)

C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

F. J. Arregui, Z. Ciaurriz, M. Oneca, and I. R. Matías, “An experimental study about hydrogels for the fabrication of optical fiber humidity sensors,” Sens. Actuators B Chem.96(1-2), 165–172 (2003).
[CrossRef]

Sens. Transducers J. (1)

J. Mathew, K. J. Thomas, V. P. N. Nampoori, and P. Radhakrishnan, “A comparative study of fiber optic humidity sensors based on chitosan and agarose,” Sens. Transducers J.84, 1633–1640 (2007).

Other (2)

J. Mathew, Y. Semenova, and G. Farrell, “Polymer coated photonics crystal fiber interferometer for relative humidity sensing,” A. Ghosh, and D. Choudhury (Eds.): Proc. IConTOP–II, pp. 73–78, (2011).

J. Lu, Z. Chen, F. Pang, and T. Wang, “Theoretical analysis of fiber-optic evanescent wave sensors,” in Proceedings of IEEE Microwave Conference, (China-Japan Joint, 2008), pp.583–587, doi: 10.1109/CJMW.2008.4772500.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the experimental setup for Agarose coating. (b) A drawing of the cross section of the PCF employed and a diagram of the Agarose coated interferometer. (SLED- super luminescent diode, TEC- thermo electric cooler, TS- translation stage, OSA- optical spectrum analyzer, SMF- single mode fiber, PCF- photonic crystal fiber, PCFI- photonic crystal fiber interferometer).

Fig. 2
Fig. 2

(a) Transmission spectra of different PCFIs with length 40 mm. (b) Refractive index response of different PCFI with length 40 mm.

Fig. 3
Fig. 3

The estimated thickness of different AC-PCFI devices at room RH of ~60% and at a higher RH of >90%.

Fig. 4
Fig. 4

(a) The average spectral peak shift of AC-PCFI A and B with respect to relative humidity. (b) The average spectral peak shift of AC-PCFI C and D with respect to relative humidity.

Fig. 5
Fig. 5

Response time of the AC-PCFI device D.

Tables (2)

Tables Icon

Table 1 Parameters of the Different AC-PCFI Devices at ~60% RH

Tables Icon

Table 2 RH Sensitivity of AC-PCFI Devices in Different RH Regions

Metrics