Abstract

Hollow-core fibers (HCFs) are a revolution in light guidance with enormous potential. They promise lower loss than any other waveguide, but have not yet achieved this potential because of a tradeoff between loss and single-moded operation. This paper demonstrates progress on a strategy to beat this tradeoff: we measure the first hollow-core fiber employing Perturbed Resonance for Improved Single Modedness (PRISM), where unwanted modes are robustly stripped away. The fiber has fundamental-mode loss of 7.5 dB/km, while other modes of the 19-lattice-cell core see loss >3000dB/km. This level of single-modedness is far better than previous 19-cell or 7-cell HCFs, and even comparable to some commercial solid-core fibers. Modeling indicates this measured loss can be improved. By breaking the connection between core size and single-modedness, this first PRISM demonstration opens a new path towards achieving the low-loss potential of HCFs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band Gap guidance of light in air,” Science 285(5433), 1537–1539 (1999) (DOI:10.1126/science.285.5433.1537).
    [CrossRef] [PubMed]
  2. N. Venkataraman, M. T. Gallagher, C. M. Smith, D. Muller, J. A. West, K. W. Koch, and J. C. Fajardo, “Low loss (13 dB/km) air core photonic band-gap fibre,” 28th European Conference on Optical Communication, 2002. ECOC 2002. vol.5, no., 1–2, 8–12 Sept. (2002).
  3. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
    [CrossRef] [PubMed]
  4. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
    [CrossRef] [PubMed]
  5. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-1-236 .
    [CrossRef] [PubMed]
  6. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4337 .
    [CrossRef] [PubMed]
  7. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18669 .
    [CrossRef] [PubMed]
  8. C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11(22), 2832–2837 (2003).
    [CrossRef] [PubMed]
  9. N. V. Wheeler, M. N. Petrovich, R. Slavik, N. K. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. Gray, F. Poletti, and D. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5A.2.
  10. J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express 20(18), 20494–20505 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20494 .
    [CrossRef] [PubMed]
  11. J. M. Fini, “Suppression of higher-order modes in aircore microstructure fiber designs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMM4. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CMM4
    [CrossRef]
  12. J. M. Fini, “Aircore microstructure fibers with suppressed higher-order modes,” Opt. Express 14(23), 11354–11361 (2006).
    [CrossRef] [PubMed]
  13. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14(16), 7342–7352 (2006).
    [CrossRef] [PubMed]
  14. L. Meng, J. M. Fini, J. W. Nicholson, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, M. Hassan, and R. Ortiz, “Bend tunable coupling in dual-hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh1H.4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2012-OTh1H.4
  15. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21(23), 4208–4213 (1982).
    [CrossRef] [PubMed]
  16. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Express 18(14), 15122–15129 (2010).
    [CrossRef] [PubMed]
  17. M. Li, J. A. West, and K. W. Koch, “Modeling effects of structural distortions on air-core photonic bandgap fibers,” J. Lightwave Technol. 25(9), 2463–2468 (2007).
    [CrossRef]
  18. F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, “Advances and limitations in the modeling of fabricated photonic bandgap fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFC2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-OFC2
  19. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12(15), 3341–3352 (2004).
    [CrossRef] [PubMed]
  20. J. Jasapara and A. D. Yablon, “Spectrogram approach to S2 fiber mode analysis to distinguish between dispersion and distributed scattering,” Opt. Lett. 37(18), 3906–3908 (2012), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-18-3906 .
    [CrossRef] [PubMed]
  21. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” J. Sel. Top. Quant. Electron. 15(1), 61–70 (2009).
    [CrossRef]
  22. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [CrossRef] [PubMed]
  23. J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004).
    [CrossRef] [PubMed]
  24. R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
    [CrossRef] [PubMed]

2012 (2)

2010 (1)

2009 (2)

2008 (3)

2007 (1)

2006 (2)

2005 (1)

2004 (2)

2003 (3)

C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11(22), 2832–2837 (2003).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band Gap guidance of light in air,” Science 285(5433), 1537–1539 (1999) (DOI:10.1126/science.285.5433.1537).
[CrossRef] [PubMed]

1982 (1)

Albin, S.

Allan, D.

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band Gap guidance of light in air,” Science 285(5433), 1537–1539 (1999) (DOI:10.1126/science.285.5433.1537).
[CrossRef] [PubMed]

Amezcua-Correa, R.

Araújo, F. M.

Aref, S. H.

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[CrossRef] [PubMed]

Birks, T.

Birks, T. A.

R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band Gap guidance of light in air,” Science 285(5433), 1537–1539 (1999) (DOI:10.1126/science.285.5433.1537).
[CrossRef] [PubMed]

Borrelli, N.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Broderick, N. G. R.

Broeng, J.

Caldas, P.

Carvalho, J. P.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band Gap guidance of light in air,” Science 285(5433), 1537–1539 (1999) (DOI:10.1126/science.285.5433.1537).
[CrossRef] [PubMed]

de Matos, C.

DeSantolo, A.

DiMarcello, F.

Dulashko, Y.

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[CrossRef] [PubMed]

Farahi, F.

Farr, L.

Ferreira, L. A.

Fini, J. M.

Florous, N. J.

Frazão, O.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Gèrôme, F.

Ghalmi, S.

Guo, S.

Hansen, K.

Hansen, T.

Hassan, M.

Jasapara, J.

Knight, J.

Knight, J. C.

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18669 .
[CrossRef] [PubMed]

R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band Gap guidance of light in air,” Science 285(5433), 1537–1539 (1999) (DOI:10.1126/science.285.5433.1537).
[CrossRef] [PubMed]

Koch, K.

Koch, K. W.

M. Li, J. A. West, and K. W. Koch, “Modeling effects of structural distortions on air-core photonic bandgap fibers,” J. Lightwave Technol. 25(9), 2463–2468 (2007).
[CrossRef]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Koshiba, M.

Latifi, H.

Leon-Saval, S. G.

Li, M.

Mangan, B.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band Gap guidance of light in air,” Science 285(5433), 1537–1539 (1999) (DOI:10.1126/science.285.5433.1537).
[CrossRef] [PubMed]

Marcuse, D.

Mason, M.

Meng, L.

Mermelstein, M. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” J. Sel. Top. Quant. Electron. 15(1), 61–70 (2009).
[CrossRef]

Monberg, E.

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Murao, T.

Nicholson, J. W.

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[CrossRef] [PubMed]

Ortiz, R.

Petrovich, M. N.

Poletti, F.

Ramachandran, S.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[CrossRef] [PubMed]

Richardson, D. J.

Roberts, P.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band Gap guidance of light in air,” Science 285(5433), 1537–1539 (1999) (DOI:10.1126/science.285.5433.1537).
[CrossRef] [PubMed]

Rogowski, R.

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band Gap guidance of light in air,” Science 285(5433), 1537–1539 (1999) (DOI:10.1126/science.285.5433.1537).
[CrossRef] [PubMed]

Sabert, H.

Saitoh, K.

Santos, J. L.

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[CrossRef] [PubMed]

Smith, C.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

St J Russell, P.

Tai, H.

Taunay, T. F.

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[CrossRef] [PubMed]

Taylor, J.

Tomlinson, A.

van Brakel, A.

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

West, J.

West, J. A.

M. Li, J. A. West, and K. W. Koch, “Modeling effects of structural distortions on air-core photonic bandgap fibers,” J. Lightwave Technol. 25(9), 2463–2468 (2007).
[CrossRef]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Williams, D.

Windeler, R. S.

Wu, F.

Yablon, A. D.

Yan, M. F.

Zhu, B.

Appl. Opt. (1)

J. Lightwave Technol. (1)

J. Sel. Top. Quant. Electron. (1)

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” J. Sel. Top. Quant. Electron. 15(1), 61–70 (2009).
[CrossRef]

Nature (2)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Opt. Express (12)

C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11(22), 2832–2837 (2003).
[CrossRef] [PubMed]

J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004).
[CrossRef] [PubMed]

S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12(15), 3341–3352 (2004).
[CrossRef] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-1-236 .
[CrossRef] [PubMed]

K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14(16), 7342–7352 (2006).
[CrossRef] [PubMed]

J. M. Fini, “Aircore microstructure fibers with suppressed higher-order modes,” Opt. Express 14(23), 11354–11361 (2006).
[CrossRef] [PubMed]

R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
[CrossRef] [PubMed]

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4337 .
[CrossRef] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[CrossRef] [PubMed]

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17(21), 18669–18675 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18669 .
[CrossRef] [PubMed]

J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Express 18(14), 15122–15129 (2010).
[CrossRef] [PubMed]

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Opt. Express 20(18), 20494–20505 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20494 .
[CrossRef] [PubMed]

Opt. Lett. (1)

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band Gap guidance of light in air,” Science 285(5433), 1537–1539 (1999) (DOI:10.1126/science.285.5433.1537).
[CrossRef] [PubMed]

Other (5)

N. Venkataraman, M. T. Gallagher, C. M. Smith, D. Muller, J. A. West, K. W. Koch, and J. C. Fajardo, “Low loss (13 dB/km) air core photonic band-gap fibre,” 28th European Conference on Optical Communication, 2002. ECOC 2002. vol.5, no., 1–2, 8–12 Sept. (2002).

N. V. Wheeler, M. N. Petrovich, R. Slavik, N. K. Baddela, E. R. Numkam Fokoua, J. R. Hayes, D. Gray, F. Poletti, and D. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5A.2.

J. M. Fini, “Suppression of higher-order modes in aircore microstructure fiber designs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMM4. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CMM4
[CrossRef]

L. Meng, J. M. Fini, J. W. Nicholson, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, M. Hassan, and R. Ortiz, “Bend tunable coupling in dual-hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh1H.4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2012-OTh1H.4

F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, “Advances and limitations in the modeling of fabricated photonic bandgap fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFC2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-OFC2

Supplementary Material (2)

» Media 1: MOV (3933 KB)     
» Media 2: MOV (3759 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Hollow fiber with resonant suppression of unwanted modes. a) Idealized geometry with 5 μm hole spacing, a 19-cell core and two 7-cell shunts. b) Effective index of modes vs normalized optical frequency, showing that shunt modes (green) are nearly index-matched to unwanted LP11-like modes (red), but not with the fundamental (blue). For the specific geometry calculated some surface modes are present in the bandgap (dots indicate surface modes crossing steeply through core modes, as well as LP21-like core modes), but a broad surface-mode-free region is present from normalized frequency Λ/λ = 3.1 to 3.5 (~180nm). c) Loss for the modes of a fiber without shunts compared to d) the same design with shunts, showing shunts provide highly selective suppression of unwanted modes.

Fig. 2
Fig. 2

a) Fiber geometry (solid) with a slightly enlarged center core, compared with the idealized geometry of Fig. 1(a) shown dashed. b) Effective index, now showing a small index mismatch between shunt (green) and LP11-like (red) modes. c) Loss shows that suppression of unwanted modes has been ruined by the core-size mismatch.

Fig. 3
Fig. 3

Perturbed resonance for robust suppression of unwanted modes. (a) Schematic of a bend-perturbed fiber with drifting orientation, where a small index mismatch between modes can be cancelled intermittently. b) Effective index shows unwanted LP11-like modes (red) falling within the perturbed resonant region (light green) of the shunt modes (dark green) with a 10cm bend perturbation. c) Orientation-averaged loss (solid) shows LP11-mode suppression restored by perturbation, despite the core-size mismatch. The straight fiber losses for the fundamental and lowest-loss HOM are repeated for comparison (light blue dashed for the fundamental, pink for the LP11).

Fig. 4
Fig. 4

SEM image of the fabricated fiber and measured loss spectrum. Minimum loss was 7.5 ± 0.5 dB/km.

Fig. 5
Fig. 5

Persistent unwanted modes of a non-PRISM fiber. Spectrograms for a conventional 19-cell hollow core fiber with a low loss region from 1500 to 1530 nm. Mode images were obtained from a separate S2 imaging measurement. Two different coil diameters, 15 cm and 5 cm, are shown. No change in the higher-order mode content with coiling was observed.

Fig. 6
Fig. 6

(a), (b) Spectrograms show the wavelength-dependent mode-content of the PRISM fiber as a function of coil diameter. The color scale shows the mode strength in dB, relative to the fundamental mode. Mode images were obtained from an S2 imaging measurement (c) Integrating the spectrum along the DGD axis provides total HOM content vs. wavelength, and (d) subtracting coiled content from straight content yields bend-induced HOM suppression vs. coil diameter.

Fig. 7
Fig. 7

HOM suppression in a PRISM. (a) S2 imaging results showing mode beats as a function of differential group delay of a 19 cell fiber, a commercial 7-cell fiber and the PRISM fiber. Also shown are the integrated higher order mode images for the different fibers, showing that the 19 cell and 7-cell fibers support strong core-guided HOMs, while the core-guided HOMs are stripped from the PRISM fiber, leaving only surface modes. (b) Measured HOM content as a function of length for a fiber coil diameter of 8.9 cm.

Fig. 8
Fig. 8

Single frame excerpts from movies of beam profile vs. wavelength (a) conventional 19 cell fiber (Media 1). (b) the PRISM fiber. (Media 2)

Metrics