Abstract

We demonstrate a novel polarization-entangled photon-pair source based on standard birefringent polarization-maintaining optical fiber. The source consists of two stretches of fiber spliced together with perpendicular polarization axes, and has the potential to be fully fiber-based, with all bulk optics replaced with in-fiber equivalents. By modelling the temporal walk-off in the fibers, we implement compensation necessary for the photon creation processes in the two stretches of fiber to be indistinguishable. Our source subsequently produces a high quality entangled state having (92.2 ± 0.2) % fidelity with a maximally entangled Bell state.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett.81(23), 5039–5043 (1998).
    [CrossRef]
  2. T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
    [CrossRef]
  3. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science306(5700), 1330–1336 (2004).
    [CrossRef] [PubMed]
  4. E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photon.6(11), 773–776 (2012).
    [CrossRef]
  5. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).
  6. A. Lamas-Linares, B. Calkins, N. A. Tomlin, T. Gerrits, A. E. Lita, J. Beyer, R. P. Mirin, and S. W. Nam, “Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths,” arXiv:.5721 (2012).
  7. X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A73, 052301 (2006).
    [CrossRef]
  8. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60(2), R773–R776 (1999).
    [CrossRef]
  9. Following the trend of culinary nomenclature, we informally refer to our cross-spliced source as a “sausage” source.
  10. J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys.9(8), 289 (2007).
    [CrossRef]
  11. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett.35(6), 802–804 (2010).
    [CrossRef] [PubMed]
  12. C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express14(15), 6936–6941 (2006).
    [CrossRef] [PubMed]
  13. M. A. Hall, J. B. Altepeter, and P. Kumar, “Drop-in compatible entanglement for optical-fiber networks,” Opt. Express17(17), 14558–14566 (2009).
    [CrossRef] [PubMed]
  14. Q. Zhou, W. Zhang, P. Wang, Y. Huang, and J. Peng, “Polarization entanglement generation at 1.5 μm based on walk-off effect due to fiber birefringence,” Opt. Lett.37(10), 1679–1681 (2012).
    [CrossRef] [PubMed]
  15. J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A76, 043836 (2007).
    [CrossRef]
  16. B. Fang, O. Cohen, J. Moreno, and V. O. Lorenz, “Polarization-entangled photon generation in a standard polarization-maintaining fiber,” in CLEO: QELS-Fundamental Science, p. QF3F.5 (Optical Society of America, 2012).
  17. E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A79, 023840 (2009).
    [CrossRef]
  18. Other forms of vector phase-matching with cross-polarized pump photons or cross-polarized signal/idler photons are not relevant here.
  19. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express17(26), 23589–23602 (2009).
    [CrossRef]
  20. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17(6), 4670–4676 (2009).
    [CrossRef] [PubMed]
  21. A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
    [CrossRef]
  22. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
    [CrossRef] [PubMed]
  23. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
    [CrossRef]
  24. B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “Standard polarization-maintaining fiber as a photon source for quantum communication applications,” in Laser Science, p. LTu5J.2 (Optical Society of America, 2012).
  25. C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 03806 (2011).
    [CrossRef]
  26. P. Trojek, “Efficient Generation of photonic entanglement and multiparty quantum communication,” Ph.D. thesis, Ludwig-Maximilians-Universität München (2007).
  27. P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008).
    [CrossRef]
  28. Due to energy conservation, the phase dependence on the idler wavelength is fully determined by the signal and pump wavelengths.
  29. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron.12(2), 233–244 (2006).
    [CrossRef]
  30. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
    [CrossRef]
  31. A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett.97, 223602 (2006).
    [CrossRef]
  32. J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett.30(12), 1530–1532 (2005).
    [CrossRef] [PubMed]

2012

E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photon.6(11), 773–776 (2012).
[CrossRef]

Q. Zhou, W. Zhang, P. Wang, Y. Huang, and J. Peng, “Polarization entanglement generation at 1.5 μm based on walk-off effect due to fiber birefringence,” Opt. Lett.37(10), 1679–1681 (2012).
[CrossRef] [PubMed]

2011

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 03806 (2011).
[CrossRef]

A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
[CrossRef]

2010

2009

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A79, 023840 (2009).
[CrossRef]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express17(26), 23589–23602 (2009).
[CrossRef]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17(6), 4670–4676 (2009).
[CrossRef] [PubMed]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Drop-in compatible entanglement for optical-fiber networks,” Opt. Express17(17), 14558–14566 (2009).
[CrossRef] [PubMed]

2008

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008).
[CrossRef]

2007

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A76, 043836 (2007).
[CrossRef]

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys.9(8), 289 (2007).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
[CrossRef]

2006

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett.97, 223602 (2006).
[CrossRef]

C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express14(15), 6936–6941 (2006).
[CrossRef] [PubMed]

X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A73, 052301 (2006).
[CrossRef]

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron.12(2), 233–244 (2006).
[CrossRef]

2005

2004

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science306(5700), 1330–1336 (2004).
[CrossRef] [PubMed]

1999

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60(2), R773–R776 (1999).
[CrossRef]

1998

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett.81(23), 5039–5043 (1998).
[CrossRef]

1996

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
[CrossRef]

Alibart, O.

A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
[CrossRef]

Altepeter, J. B.

Alvarez, R.

E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photon.6(11), 773–776 (2012).
[CrossRef]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60(2), R773–R776 (1999).
[CrossRef]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

Bell, B.

A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
[CrossRef]

Beyer, J.

A. Lamas-Linares, B. Calkins, N. A. Tomlin, T. Gerrits, A. E. Lita, J. Beyer, R. P. Mirin, and S. W. Nam, “Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths,” arXiv:.5721 (2012).

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Brainis, E.

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A79, 023840 (2009).
[CrossRef]

Calkins, B.

A. Lamas-Linares, B. Calkins, N. A. Tomlin, T. Gerrits, A. E. Lita, J. Beyer, R. P. Mirin, and S. W. Nam, “Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths,” arXiv:.5721 (2012).

Cemlyn, B.

A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
[CrossRef]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17(6), 4670–4676 (2009).
[CrossRef] [PubMed]

Chen, J.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys.9(8), 289 (2007).
[CrossRef]

X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A73, 052301 (2006).
[CrossRef]

C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express14(15), 6936–6941 (2006).
[CrossRef] [PubMed]

Clark, A.

A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
[CrossRef]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17(6), 4670–4676 (2009).
[CrossRef] [PubMed]

Cohen, O.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 03806 (2011).
[CrossRef]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express17(26), 23589–23602 (2009).
[CrossRef]

B. Fang, O. Cohen, J. Moreno, and V. O. Lorenz, “Polarization-entangled photon generation in a standard polarization-maintaining fiber,” in CLEO: QELS-Fundamental Science, p. QF3F.5 (Optical Society of America, 2012).

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “Standard polarization-maintaining fiber as a photon source for quantum communication applications,” in Laser Science, p. LTu5J.2 (Optical Society of America, 2012).

de la Cruz-Gutierrez, M.

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett.97, 223602 (2006).
[CrossRef]

Dogariu, A.

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60(2), R773–R776 (1999).
[CrossRef]

Eisaman, M. D.

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A76, 043836 (2007).
[CrossRef]

Erdmann, R. K.

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett.97, 223602 (2006).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Fan, J.

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A76, 043836 (2007).
[CrossRef]

J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett.30(12), 1530–1532 (2005).
[CrossRef] [PubMed]

Fang, B.

B. Fang, O. Cohen, J. Moreno, and V. O. Lorenz, “Polarization-entangled photon generation in a standard polarization-maintaining fiber,” in CLEO: QELS-Fundamental Science, p. QF3F.5 (Optical Society of America, 2012).

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “Standard polarization-maintaining fiber as a photon source for quantum communication applications,” in Laser Science, p. LTu5J.2 (Optical Society of America, 2012).

Fedrizzi, A.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

Fook Lee, K.

X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A73, 052301 (2006).
[CrossRef]

Fulconis, J.

A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
[CrossRef]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17(6), 4670–4676 (2009).
[CrossRef] [PubMed]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

A. Lamas-Linares, B. Calkins, N. A. Tomlin, T. Gerrits, A. E. Lita, J. Beyer, R. P. Mirin, and S. W. Nam, “Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths,” arXiv:.5721 (2012).

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science306(5700), 1330–1336 (2004).
[CrossRef] [PubMed]

Halder, M.

A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
[CrossRef]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17(6), 4670–4676 (2009).
[CrossRef] [PubMed]

Hall, M. A.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

Herbst, T.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

Huang, Y.

Jennewein, T.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett.81(23), 5039–5043 (1998).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Kofler, J.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

Kumar, P.

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60(2), R773–R776 (1999).
[CrossRef]

Laing, A.

E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photon.6(11), 773–776 (2012).
[CrossRef]

Lamas-Linares, A.

A. Lamas-Linares, B. Calkins, N. A. Tomlin, T. Gerrits, A. E. Lita, J. Beyer, R. P. Mirin, and S. W. Nam, “Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths,” arXiv:.5721 (2012).

Lawson, T.

E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photon.6(11), 773–776 (2012).
[CrossRef]

Lee, K. F.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Levin, T.

Li, X.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys.9(8), 289 (2007).
[CrossRef]

X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A73, 052301 (2006).
[CrossRef]

Liang, C.

X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A73, 052301 (2006).
[CrossRef]

C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express14(15), 6936–6941 (2006).
[CrossRef] [PubMed]

Limpert, J.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron.12(2), 233–244 (2006).
[CrossRef]

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
[CrossRef]

Lita, A. E.

A. Lamas-Linares, B. Calkins, N. A. Tomlin, T. Gerrits, A. E. Lita, J. Beyer, R. P. Mirin, and S. W. Nam, “Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths,” arXiv:.5721 (2012).

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science306(5700), 1330–1336 (2004).
[CrossRef] [PubMed]

Lorenz, V. O.

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “Standard polarization-maintaining fiber as a photon source for quantum communication applications,” in Laser Science, p. LTu5J.2 (Optical Society of America, 2012).

B. Fang, O. Cohen, J. Moreno, and V. O. Lorenz, “Polarization-entangled photon generation in a standard polarization-maintaining fiber,” in CLEO: QELS-Fundamental Science, p. QF3F.5 (Optical Society of America, 2012).

Lundeen, J. S.

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express17(26), 23589–23602 (2009).
[CrossRef]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

Ma, X.-S.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science306(5700), 1330–1336 (2004).
[CrossRef] [PubMed]

Mahou, P.

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

Martin-Lopez, E.

E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photon.6(11), 773–776 (2012).
[CrossRef]

Medic, M.

Migdall, A.

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A76, 043836 (2007).
[CrossRef]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

A. Lamas-Linares, B. Calkins, N. A. Tomlin, T. Gerrits, A. E. Lita, J. Beyer, R. P. Mirin, and S. W. Nam, “Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths,” arXiv:.5721 (2012).

Moreno, J.

B. Fang, O. Cohen, J. Moreno, and V. O. Lorenz, “Polarization-entangled photon generation in a standard polarization-maintaining fiber,” in CLEO: QELS-Fundamental Science, p. QF3F.5 (Optical Society of America, 2012).

Moreno, J. B.

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “Standard polarization-maintaining fiber as a photon source for quantum communication applications,” in Laser Science, p. LTu5J.2 (Optical Society of America, 2012).

Mosley, P. J.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

Nam, S. W.

A. Lamas-Linares, B. Calkins, N. A. Tomlin, T. Gerrits, A. E. Lita, J. Beyer, R. P. Mirin, and S. W. Nam, “Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths,” arXiv:.5721 (2012).

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

O’Brien, J. L.

E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photon.6(11), 773–776 (2012).
[CrossRef]

Patel, M.

Peng, J.

Prevedel, R.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

Puentes, G.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

Ramelow, S.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

Rarity, J. G.

A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
[CrossRef]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17(6), 4670–4676 (2009).
[CrossRef] [PubMed]

Ratschbacher, L.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

Roser, F.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron.12(2), 233–244 (2006).
[CrossRef]

Scheidl, T.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

Schreiber, T.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron.12(2), 233–244 (2006).
[CrossRef]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

Silberhorn, C.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 03806 (2011).
[CrossRef]

Simon, C.

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett.81(23), 5039–5043 (1998).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Smith, B. J.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 03806 (2011).
[CrossRef]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express17(26), 23589–23602 (2009).
[CrossRef]

Söller, C.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 03806 (2011).
[CrossRef]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

Tomlin, N. A.

A. Lamas-Linares, B. Calkins, N. A. Tomlin, T. Gerrits, A. E. Lita, J. Beyer, R. P. Mirin, and S. W. Nam, “Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths,” arXiv:.5721 (2012).

Trojek, P.

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008).
[CrossRef]

P. Trojek, “Efficient Generation of photonic entanglement and multiparty quantum communication,” Ph.D. thesis, Ludwig-Maximilians-Universität München (2007).

Tunnermann, A.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron.12(2), 233–244 (2006).
[CrossRef]

U’Ren, A. B.

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett.97, 223602 (2006).
[CrossRef]

Ursin, R.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

Voss, P. L.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys.9(8), 289 (2007).
[CrossRef]

X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A73, 052301 (2006).
[CrossRef]

Wadsworth, W. J.

A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
[CrossRef]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17(6), 4670–4676 (2009).
[CrossRef] [PubMed]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60(2), R773–R776 (1999).
[CrossRef]

Walmsley, I. A.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 03806 (2011).
[CrossRef]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express17(26), 23589–23602 (2009).
[CrossRef]

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett.97, 223602 (2006).
[CrossRef]

Wang, L. J.

Wang, P.

Weihs, G.

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett.81(23), 5039–5043 (1998).
[CrossRef]

Weinfurter, H.

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008).
[CrossRef]

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett.81(23), 5039–5043 (1998).
[CrossRef]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60(2), R773–R776 (1999).
[CrossRef]

Xiong, C.

A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
[CrossRef]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17(6), 4670–4676 (2009).
[CrossRef] [PubMed]

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
[CrossRef]

Zeilinger, A.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett.81(23), 5039–5043 (1998).
[CrossRef]

Zhang, W.

Zhou, Q.

Zhou, X.-Q.

E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photon.6(11), 773–776 (2012).
[CrossRef]

Appl. Phys. Lett.

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92(21), 211103 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron.12(2), 233–244 (2006).
[CrossRef]

J. Lightwave Technol.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol.14(1), 58–65 (1996).
[CrossRef]

Nat. Photon.

E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nat. Photon.6(11), 773–776 (2012).
[CrossRef]

New J. of Phys.

T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. of Phys.11(8), 085002 (2009).
[CrossRef]

New J. Phys.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys.9(8), 289 (2007).
[CrossRef]

A. Clark, B. Bell, J. Fulconis, M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys.13(6), 065009 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
[CrossRef]

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 03806 (2011).
[CrossRef]

X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A73, 052301 (2006).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60(2), R773–R776 (1999).
[CrossRef]

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A76, 043836 (2007).
[CrossRef]

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A79, 023840 (2009).
[CrossRef]

Phys. Rev. Lett.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett.81(23), 5039–5043 (1998).
[CrossRef]

A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon states with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett.97, 223602 (2006).
[CrossRef]

Science

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science306(5700), 1330–1336 (2004).
[CrossRef] [PubMed]

Other

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv:1209.5774 (2012).

A. Lamas-Linares, B. Calkins, N. A. Tomlin, T. Gerrits, A. E. Lita, J. Beyer, R. P. Mirin, and S. W. Nam, “Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths,” arXiv:.5721 (2012).

Following the trend of culinary nomenclature, we informally refer to our cross-spliced source as a “sausage” source.

Other forms of vector phase-matching with cross-polarized pump photons or cross-polarized signal/idler photons are not relevant here.

B. Fang, O. Cohen, J. Moreno, and V. O. Lorenz, “Polarization-entangled photon generation in a standard polarization-maintaining fiber,” in CLEO: QELS-Fundamental Science, p. QF3F.5 (Optical Society of America, 2012).

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “Standard polarization-maintaining fiber as a photon source for quantum communication applications,” in Laser Science, p. LTu5J.2 (Optical Society of America, 2012).

P. Trojek, “Efficient Generation of photonic entanglement and multiparty quantum communication,” Ph.D. thesis, Ludwig-Maximilians-Universität München (2007).

Due to energy conservation, the phase dependence on the idler wavelength is fully determined by the signal and pump wavelengths.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Theoretical phase deviation around the mean phase, before (top) and after (bottom) compensation, for various signal and pump wavelengths. The strong phase change over pump and signal bandwidths in the uncompensated case leads to a highly mixed state, while the nearly flat map after compensation leads to a nearly pure entangled state.

Fig. 2
Fig. 2

Experimental apparatus for the cross-spliced entanglement source. Pulses generated by the mode-locked Ti:sapphire laser pass though a bandpass filter (BPF) centred at 771 nm wavelength, then through a polarizing beam-splitter (PBS) oriented at 45°. This light is coupled into the cross-spliced fibers (PMF1 and PMF2) where entangled photon pair generation occurs via four-wave mixing. The pump is removed with a notch filter (NF) and the signal and idler photons are separated with a dichroic mirror (DM). The signal photon passes through a half-wave plate (HWP) and both photons are phase/time compensated with tuneable birefringent compensators (BC). The polarization correlations of the photons are analyzed with quarter-wave plates (QWP) and polarizers (POL) before photons pass through interference filters (IF) and are coupled into single-mode (SM) fibers. The photons are detected by silicon avalanche photodiodes (APD) and their detection and coincidence counts are registered by a timetagging module (&), then recorded by a computer. Inset: illustration of the polarization axes of crossed-fibers and photon generation.

Fig. 3
Fig. 3

(a) Measured spectrum from our cross-spliced fiber source, showing narrowband signal and idler modes well away from the main Raman contamination, which extends beyond the vertical range shown. Some residual pump in the centre of the notch filter is also visible. (b) Theoretical phase-matching curves for signal (dashed red) and idler (solid blue) with measured points indicated by squares and triangles, respectively. A wide range of signal and idler wavelengths are available in PM fiber by tuning the pump wavelength. Other vector and scalar phase-matching conditions exist (see e.g. Refs. [17,20,21]) but are not relevant here.

Fig. 4
Fig. 4

(a) Measured coincidence timing histograms, showing excellent timing correlation of signal and idler photons and negligible background. The 50 mW peak extends beyond the top of the graph, which has a shortened vertical scale in order to see accidental coincidences that occur regularly at the pump repetition period. (b) Dependence of entanglement visibility on average pump power, for rectilinear basis (blue circles) and diagonal basis (red triangles). Total visibility reaches a maximum around 30 mW pump power. Error bars are comparable to symbol size.

Fig. 5
Fig. 5

Real (left) and imaginary (right) parts of the two-qubit tomographically reconstructed density matrix of the photon pair produced by the source, showing fidelity with the maximally entangled state singlet state |Ψ〉 of 0.922 ± 0.002. (The source produces this state instead of |Φ〉 due to the polarization flip of the signal photon.)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρ = | ϕ ϕ | p s ( λ s ) p p ( λ p ) d λ s d λ p ,
ϕ 1 ( λ s , λ p ) = 2 π L λ s [ n ( λ s ) + B ] + 2 π L λ i [ n ( λ i ) + B ]
ϕ 2 ( λ p ) = 2 2 π L λ p [ n ( λ p ) ]
ϕ 2 , NL ( λ p ) = [ 1 + ( 2 / 3 ) ] γ P L ,
ϕ ( λ s , λ p ) = ϕ 2 + ϕ 2 , NL ϕ 1 .

Metrics