Abstract

We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the quantum Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent field which suppresses the cavity field buildup and alters the path of a weak signal beam. We predict more than 35 dB of switching contrast with less than 0.1 dB loss using just 2 μW of control-beam power for signal beams with less than single photon intensities inside the cavity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
    [CrossRef]
  2. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science308, 672–674 (2005).
    [CrossRef] [PubMed]
  3. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics2, 185–189 (2008).
    [CrossRef]
  4. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express16, 7693–7702 (2008).
    [CrossRef] [PubMed]
  5. D. Miller, “Are optical transistors the logical next step?” Nat. Photonics4, 3–5 (2010).
    [CrossRef]
  6. M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion coulomb crystals,” Nat. Photonics5, 633–636 (2011).
    [CrossRef]
  7. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50, 36–42 (1997).
    [CrossRef]
  8. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
    [CrossRef]
  9. J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett.32, 1317–1319 (2007).
    [CrossRef] [PubMed]
  10. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
    [CrossRef] [PubMed]
  11. M. Fleischhauer, “Switching light by vacuum,” Science333, 1228–1229 (2011).
    [CrossRef] [PubMed]
  12. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783–786 (2001).
    [CrossRef] [PubMed]
  13. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
    [CrossRef]
  14. A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A65, 031802 (2002).
    [CrossRef]
  15. M. D. Lukin, “Colloquium : Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys.75, 457–472 (2003).
    [CrossRef]
  16. B. Misra and E. Sudarshan, “The Zeno’s paradox in quantum theory,” J. of Math. Phys.18, 756 – 763 (1977).
    [CrossRef]
  17. B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum zeno effect and two-photon absorption,” Phys. Rev. A79, 063830 (2009).
    [CrossRef]
  18. S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
    [CrossRef]
  19. Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett.36, 1413–1415 (2011).
    [CrossRef] [PubMed]
  20. K. Kieu, L. Schneebeli, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “All-optical switching based on inverse raman scattering in liquid-core optical fibers,” Opt. Lett.37, 942–944 (2012).
    [CrossRef] [PubMed]
  21. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev.100, 703–722 (1955).
    [CrossRef]
  22. H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).
  23. T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, Fabrication, Coupling and Nonlinear Optics of Ultra-High-Q Microcavities (World Scientific Publishing, 2004, vol. 5, Chap. 5, pp. 177–238).
    [CrossRef]
  24. J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the zeno effect,” Phys. Rev. A70, 062302 (2004).
    [CrossRef]
  25. D. A. Steck, “Rubidium 87 d line data,” http://steck.us/alkalidata/ (2009).
  26. S. G. Schirmer and A. I. Solomon, “Constraints on relaxation rates for n-level quantum systems,” Phys. Rev. A70, 022107 (2004).
    [CrossRef]
  27. P. R. Berman and R. C. O’Connell, “Constraints on dephasing widths and shifts in three-level quantum systems,” Phys. Rev. A71, 022501 (2005).
    [CrossRef]
  28. O. S. Heavens, “Radiative transition probabilities of the lower excited states of the alkali metals,” J. Opt. Soc. Am.51, 1058–1061 (1961).
    [CrossRef]
  29. R. G. Brewer and E. L. Hahn, “Coherent two-photon processes: Transient and steady-state cases,” Phys. Rev. A11, 1641–1649 (1975).
    [CrossRef]
  30. J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).
    [CrossRef] [PubMed]
  31. L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” arXiv:1204.0393 (2012).

2013 (1)

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
[CrossRef]

2012 (2)

2011 (3)

Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett.36, 1413–1415 (2011).
[CrossRef] [PubMed]

M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion coulomb crystals,” Nat. Photonics5, 633–636 (2011).
[CrossRef]

M. Fleischhauer, “Switching light by vacuum,” Science333, 1228–1229 (2011).
[CrossRef] [PubMed]

2010 (1)

D. Miller, “Are optical transistors the logical next step?” Nat. Photonics4, 3–5 (2010).
[CrossRef]

2009 (2)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum zeno effect and two-photon absorption,” Phys. Rev. A79, 063830 (2009).
[CrossRef]

2008 (2)

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics2, 185–189 (2008).
[CrossRef]

M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express16, 7693–7702 (2008).
[CrossRef] [PubMed]

2007 (1)

2005 (3)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science308, 672–674 (2005).
[CrossRef] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

P. R. Berman and R. C. O’Connell, “Constraints on dephasing widths and shifts in three-level quantum systems,” Phys. Rev. A71, 022501 (2005).
[CrossRef]

2004 (2)

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the zeno effect,” Phys. Rev. A70, 062302 (2004).
[CrossRef]

S. G. Schirmer and A. I. Solomon, “Constraints on relaxation rates for n-level quantum systems,” Phys. Rev. A70, 022107 (2004).
[CrossRef]

2003 (2)

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
[CrossRef]

M. D. Lukin, “Colloquium : Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys.75, 457–472 (2003).
[CrossRef]

2002 (1)

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A65, 031802 (2002).
[CrossRef]

2001 (2)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783–786 (2001).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50, 36–42 (1997).
[CrossRef]

1995 (1)

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).
[CrossRef] [PubMed]

1977 (1)

B. Misra and E. Sudarshan, “The Zeno’s paradox in quantum theory,” J. of Math. Phys.18, 756 – 763 (1977).
[CrossRef]

1975 (1)

R. G. Brewer and E. L. Hahn, “Coherent two-photon processes: Transient and steady-state cases,” Phys. Rev. A11, 1641–1649 (1975).
[CrossRef]

1961 (1)

1955 (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev.100, 703–722 (1955).
[CrossRef]

Albert, M.

M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion coulomb crystals,” Nat. Photonics5, 633–636 (2011).
[CrossRef]

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, Fabrication, Coupling and Nonlinear Optics of Ultra-High-Q Microcavities (World Scientific Publishing, 2004, vol. 5, Chap. 5, pp. 177–238).
[CrossRef]

Austin, T.

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
[CrossRef]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev.100, 703–722 (1955).
[CrossRef]

Baauw, D.

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
[CrossRef]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Berman, P. R.

P. R. Berman and R. C. O’Connell, “Constraints on dephasing widths and shifts in three-level quantum systems,” Phys. Rev. A71, 022501 (2005).
[CrossRef]

Bolten, J.

Brewer, R. G.

R. G. Brewer and E. L. Hahn, “Coherent two-photon processes: Transient and steady-state cases,” Phys. Rev. A11, 1641–1649 (1975).
[CrossRef]

Camacho, R. M.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
[CrossRef]

Clark, S. M.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science308, 672–674 (2005).
[CrossRef] [PubMed]

Dantan, A.

M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion coulomb crystals,” Nat. Photonics5, 633–636 (2011).
[CrossRef]

Dawes, A. M. C.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science308, 672–674 (2005).
[CrossRef] [PubMed]

Desiatov, B.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” arXiv:1204.0393 (2012).

DeSimone, A.

Ding, C.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics2, 185–189 (2008).
[CrossRef]

Drewsen, M.

M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion coulomb crystals,” Nat. Photonics5, 633–636 (2011).
[CrossRef]

Flautner, K.

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
[CrossRef]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783–786 (2001).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer, “Switching light by vacuum,” Science333, 1228–1229 (2011).
[CrossRef] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

Först, M.

Franson, J. D.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
[CrossRef]

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum zeno effect and two-photon absorption,” Phys. Rev. A79, 063830 (2009).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the zeno effect,” Phys. Rev. A70, 062302 (2004).
[CrossRef]

Gaeta, A. L.

Gauthier, D. J.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science308, 672–674 (2005).
[CrossRef] [PubMed]

Gea-Banacloche, J.

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).
[CrossRef] [PubMed]

Gong, Q.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics2, 185–189 (2008).
[CrossRef]

Gottheil, M.

Goykhman, I.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” arXiv:1204.0393 (2012).

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Hager, J.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A65, 031802 (2002).
[CrossRef]

Hahn, E. L.

R. G. Brewer and E. L. Hahn, “Coherent two-photon processes: Transient and steady-state cases,” Phys. Rev. A11, 1641–1649 (1975).
[CrossRef]

Hales, J. M.

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50, 36–42 (1997).
[CrossRef]

Haus, H. A.

H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).

Heavens, O. S.

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Hendrickson, S. M.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
[CrossRef]

Hernandez, G.

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Hou, T.

Hu, J.

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
[CrossRef]

Hu, X.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics2, 185–189 (2008).
[CrossRef]

Illing, L.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science308, 672–674 (2005).
[CrossRef] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

Irwin, M.

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
[CrossRef]

Jacobs, B. C.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
[CrossRef]

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum zeno effect and two-photon absorption,” Phys. Rev. A79, 063830 (2009).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the zeno effect,” Phys. Rev. A70, 062302 (2004).
[CrossRef]

Jiang, P.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics2, 185–189 (2008).
[CrossRef]

Jin, S.-z.

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).
[CrossRef] [PubMed]

Kandemir, M.

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
[CrossRef]

Kieu, K.

Kim, N.

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, Fabrication, Coupling and Nonlinear Optics of Ultra-High-Q Microcavities (World Scientific Publishing, 2004, vol. 5, Chap. 5, pp. 177–238).
[CrossRef]

Kurz, H.

Kuzucu, O.

Levy, U.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” arXiv:1204.0393 (2012).

Li, Y.-q.

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).
[CrossRef] [PubMed]

Lipson, M.

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

M. D. Lukin, “Colloquium : Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys.75, 457–472 (2003).
[CrossRef]

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A65, 031802 (2002).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783–786 (2001).
[CrossRef] [PubMed]

Mair, A.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A65, 031802 (2002).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783–786 (2001).
[CrossRef] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

Merzlyak, E.

Miller, D.

D. Miller, “Are optical transistors the logical next step?” Nat. Photonics4, 3–5 (2010).
[CrossRef]

Min, B.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, Fabrication, Coupling and Nonlinear Optics of Ultra-High-Q Microcavities (World Scientific Publishing, 2004, vol. 5, Chap. 5, pp. 177–238).
[CrossRef]

Misra, B.

B. Misra and E. Sudarshan, “The Zeno’s paradox in quantum theory,” J. of Math. Phys.18, 756 – 763 (1977).
[CrossRef]

Mudge, T.

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
[CrossRef]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Narayanan, V.

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
[CrossRef]

Norwood, R. A.

O’Connell, R. C.

P. R. Berman and R. C. O’Connell, “Constraints on dephasing widths and shifts in three-level quantum systems,” Phys. Rev. A71, 022501 (2005).
[CrossRef]

Perry, J. W.

Peyghambarian, N.

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Phillips, D. F.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A65, 031802 (2002).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783–786 (2001).
[CrossRef] [PubMed]

Pittman, T. B.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
[CrossRef]

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the zeno effect,” Phys. Rev. A70, 062302 (2004).
[CrossRef]

Plötzing, T.

Rakich, P. T.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
[CrossRef]

Schirmer, S. G.

S. G. Schirmer and A. I. Solomon, “Constraints on relaxation rates for n-level quantum systems,” Phys. Rev. A70, 022107 (2004).
[CrossRef]

Schneebeli, L.

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Shaw, M. J.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
[CrossRef]

Solomon, A. I.

S. G. Schirmer and A. I. Solomon, “Constraints on relaxation rates for n-level quantum systems,” Phys. Rev. A70, 022107 (2004).
[CrossRef]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, Fabrication, Coupling and Nonlinear Optics of Ultra-High-Q Microcavities (World Scientific Publishing, 2004, vol. 5, Chap. 5, pp. 177–238).
[CrossRef]

Stern, L.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” arXiv:1204.0393 (2012).

Sudarshan, E.

B. Misra and E. Sudarshan, “The Zeno’s paradox in quantum theory,” J. of Math. Phys.18, 756 – 763 (1977).
[CrossRef]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev.100, 703–722 (1955).
[CrossRef]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, Fabrication, Coupling and Nonlinear Optics of Ultra-High-Q Microcavities (World Scientific Publishing, 2004, vol. 5, Chap. 5, pp. 177–238).
[CrossRef]

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Wahlbrink, T.

Waldow, M.

Walsworth, R. L.

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A65, 031802 (2002).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783–786 (2001).
[CrossRef] [PubMed]

Weiler, C. N.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
[CrossRef]

Wen, Y. H.

Xiao, M.

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).
[CrossRef] [PubMed]

Yang, H.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics2, 185–189 (2008).
[CrossRef]

Yang, L.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, Fabrication, Coupling and Nonlinear Optics of Ultra-High-Q Microcavities (World Scientific Publishing, 2004, vol. 5, Chap. 5, pp. 177–238).
[CrossRef]

Young, A. I.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
[CrossRef]

Zhang, J.

Zhu, Y.

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

Computer (1)

N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer36, 68 – 75 (2003).
[CrossRef]

J. of Math. Phys. (1)

B. Misra and E. Sudarshan, “The Zeno’s paradox in quantum theory,” J. of Math. Phys.18, 756 – 763 (1977).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Photonics (3)

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics2, 185–189 (2008).
[CrossRef]

D. Miller, “Are optical transistors the logical next step?” Nat. Photonics4, 3–5 (2010).
[CrossRef]

M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion coulomb crystals,” Nat. Photonics5, 633–636 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev.100, 703–722 (1955).
[CrossRef]

Phys. Rev. A (8)

J. D. Franson, B. C. Jacobs, and T. B. Pittman, “Quantum computing using single photons and the zeno effect,” Phys. Rev. A70, 062302 (2004).
[CrossRef]

S. G. Schirmer and A. I. Solomon, “Constraints on relaxation rates for n-level quantum systems,” Phys. Rev. A70, 022107 (2004).
[CrossRef]

P. R. Berman and R. C. O’Connell, “Constraints on dephasing widths and shifts in three-level quantum systems,” Phys. Rev. A71, 022501 (2005).
[CrossRef]

R. G. Brewer and E. L. Hahn, “Coherent two-photon processes: Transient and steady-state cases,” Phys. Rev. A11, 1641–1649 (1975).
[CrossRef]

J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A51, 576–584 (1995).
[CrossRef] [PubMed]

B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum zeno effect and two-photon absorption,” Phys. Rev. A79, 063830 (2009).
[CrossRef]

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical-switching demonstration using two-photon absorption and the zeno effect,” Phys. Rev. A87, 023808 (2013).
[CrossRef]

A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, “Phase coherence and control of stored photonic information,” Phys. Rev. A65, 031802 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102, 203902 (2009).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783–786 (2001).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today50, 36–42 (1997).
[CrossRef]

Rev. Mod. Phys. (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

M. D. Lukin, “Colloquium : Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys.75, 457–472 (2003).
[CrossRef]

Science (2)

M. Fleischhauer, “Switching light by vacuum,” Science333, 1228–1229 (2011).
[CrossRef] [PubMed]

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science308, 672–674 (2005).
[CrossRef] [PubMed]

Other (4)

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” arXiv:1204.0393 (2012).

D. A. Steck, “Rubidium 87 d line data,” http://steck.us/alkalidata/ (2009).

H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).

T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, Fabrication, Coupling and Nonlinear Optics of Ultra-High-Q Microcavities (World Scientific Publishing, 2004, vol. 5, Chap. 5, pp. 177–238).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the EIT based Zeno all-optical micro-resonator switch. (a) When only a single input beam is weakly coupled to the cavity, strong SPA inhibits field buildup causing the beam to bypass the resonator and exit via the through port Et. (b) When two beams are present, denoted by blue for the signal beam and red for the control beam, the control beam eliminates the evanescent coupling of the fields to the atoms surrounding the cavity through EIT. This reduces the loss present, allowing the signal beam to build in the resonator, exiting through the drop port Ed.

Fig. 2
Fig. 2

Simulated normalized electric field profile of the microdisk, showing the radial component of the mode used in the calculation of the average absorption coefficient (see Eq. (10)). The cutout is the along page (side) view of Fig. 1. The radius of the device is set such that the free spectral range is equal to 4 nm, allowing for simultaneous resonance at 780nm and 776nm, and the thickness of the disk is chosen such that 30% of the field is outside the resonator.

Fig. 3
Fig. 3

The three-level atom we use to model the resonant 5S1/2 → 5P3/2 and 5P3/2 → 5D5/2 transitions in Rubidium, including all decay channels. The dotted lines indicate the 5P3/2 splitting induced by the upper beam. The state on the right is the 6P3/2 which provides a decay channel from the 5D5/2 excited state to the 5S1/2 ground state.

Fig. 4
Fig. 4

Average absorption coefficient, denoted by ᾱ in the text, of the signal beam with the control beam on (blue curve) and control beam off (red curve), plotted as a function of the signal beam detuning, Δs. With the control beam on, the standard Doppler broadened line is split. Because of the non-uniform control field intensity, the usual Autler–Townes splitting is replaced with the absorption profile shown in blue.

Fig. 5
Fig. 5

Through and drop port transmission plots for the parameters given in Tables 2 and 3. Each plot provides the transmission percentage as a function of the signal laser detuning from the cavity resonance. The red curve corresponds to the case where EIT is off, and the blue curve corresponds to the case when the EIT control beam is on. In figures (a) and (b) we use the parameters in Table 2 to equalize the bandwidth in both ports. In figures (c) and (d) we use the parameters in Table 3 where the coupling condition was chosen such that the contrast was equalized.

Tables (3)

Tables Icon

Table 1 Parameters used in atomic simulation. Rubidium parameters taken from Ref. [25].

Tables Icon

Table 2 Switch performance results - equal bandwidth

Tables Icon

Table 3 Switch performance results - equal contrast

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

H = ( h ¯ Ω s 2 | 1 2 | h ¯ Ω c 2 | 2 3 | + h . c . ) + h ¯ Δ s | 1 1 | h ¯ Δ c | 3 3 | .
ρ ˙ 11 = i Ω s 2 ρ 21 i Ω s * 2 ρ 12 + Γ 12 ρ 22 + Γ 13 ρ 33
ρ ˙ 22 = i Ω c 2 ρ 32 i Ω c * 2 ρ 23 + i Ω s * 2 ρ 12 i Ω s 2 ρ 21 Γ 12 ρ 22 + Γ 23 ρ 33
ρ ˙ 33 = i Ω c * 2 ρ 23 i Ω c 2 ρ 32 ( Γ 13 + Γ 23 ) ρ 33
ρ ˙ 12 = i Ω s 2 ( ρ 22 ρ 11 ) i Ω c * 2 ρ 13 i ( Δ s i γ 12 ) ρ 12
ρ ˙ 13 = i Ω s 2 ρ 23 i Ω c 2 ρ 12 i ( Δ s + Δ c i γ 13 ) ρ 13
ρ ˙ 23 = i Ω c 2 ( ρ 33 ρ 22 ) i Ω c 2 ρ 22 i ( Δ c i γ 23 ) ρ 23 ,
F ( Δ ) = 1 2 π σ D e Δ s , c 2 2 σ D 2 ,
d a d t = i Δ a 1 2 ( κ 0 + κ e + κ 1 + κ 2 ) a + i κ 1 s in ,
a = i 2 κ 1 2 i Δ + ( κ 0 + κ e + κ 1 + κ 2 ) s i n .
s t = s in + i κ 1 a = 2 i Δ + ( κ 0 + κ e κ 1 + κ 2 ) 2 i Δ + ( κ 0 + κ e + κ 1 + κ 2 ) s in .
s d = i κ 2 a = 2 κ 1 κ 2 2 i Δ + ( κ 0 + κ e + κ 1 + κ 2 ) s in .
T = 4 Δ 2 + ( κ 0 + κ e κ 1 + κ 2 ) 2 4 Δ 2 + ( κ 0 + κ e + κ 1 + κ 2 ) 2
D = 4 κ 1 κ 2 4 Δ 2 + ( κ 0 + κ e + κ 1 + κ 2 ) 2 .
α ( Ω s , Ω c ) = 4 N d 2 ω χ 12 ( Ω s , Ω c ) h ¯ ε 0 c ,
α ¯ = V e α ( Ω s , Ω c ) w ( r ) d V ,
w ( r ) = | Ω s ( r ) | 2 V t | Ω s ( r ) | 2 d V

Metrics