Abstract

A stacked metal-dielectric hole array (SHA) containing rectangular holes whose shape gradually varies in-plane is proposed as a means of achieving wavefront control. The dependence of the transmitted phase on the frequency can be tuned by the hole shape, in particular the length of the sides that are normal to the incident polarization. The combination of periodic holes along the polarization direction and the gradual change in hole shape normal to the polarization direction produce an inclined wavefront for 1-dimensional beam steering. An in-plane phase difference of 0.6π using an SHA with a thickness of one-sixth of the wavelength has been experimentally demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007).
    [CrossRef] [PubMed]
  2. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
    [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
    [CrossRef]
  4. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
    [CrossRef] [PubMed]
  5. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312, 892–894 (2006).
    [CrossRef] [PubMed]
  6. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79, 075425 (2009).
    [CrossRef]
  7. A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.101, 103902 (2008).
    [CrossRef] [PubMed]
  8. S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).
  9. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96, 097401 (2006).
    [CrossRef] [PubMed]
  10. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452, 728–731 (2008).
    [CrossRef] [PubMed]
  11. J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107, 043903 (2011).
    [CrossRef] [PubMed]
  12. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98, 093113 (2011).
    [CrossRef]
  13. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for cmos image sensor applications,” Nano Lett.12, 4349–4354 (2012).
    [CrossRef] [PubMed]
  14. A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
    [CrossRef]
  15. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
    [CrossRef] [PubMed]
  16. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
    [CrossRef] [PubMed]
  17. T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design,” Opt. Express20, 16092–16103 (2012).
    [CrossRef] [PubMed]
  18. A. Ourir, A. D. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88, 084103 (2006).
    [CrossRef]
  19. S. Wang, F. Garet, K. Blary, C. Croënne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys.107, 074510 (2010).
    [CrossRef]
  20. H. Chen, B. I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett.89, 053509 (2006).
    [CrossRef]
  21. A. Ourir, S. N. Burokur, and A. D. Lustrac, “Phase-varying metamaterial for compact steerable directive antenna,” Electron. Lett.43, 493–494 (2007).
    [CrossRef]
  22. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express13, 1933–1938 (2005).
    [CrossRef] [PubMed]
  23. F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B74, 153411 (2006).
    [CrossRef]
  24. S. Collin, F. Pardo, and J. L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express15, 4310–4320 (2007).
    [CrossRef] [PubMed]
  25. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express17, 19996–20011 (2009).
    [CrossRef] [PubMed]
  26. A. D. Rakić, A. B. Djurišíc, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37, 5271–5283 (1998).
    [CrossRef]
  27. J. Bravo-Abad, F. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett.93, 227401 (2004).
    [CrossRef] [PubMed]
  28. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
    [CrossRef] [PubMed]
  29. H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, “Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance,” J. Appl. Phys.95, 793–805 (2004).
    [CrossRef]
  30. Z. Ku, J. Zhang, and S. Brueck, “Bi-anisotropy of multiple-layer fishnet negative-index metamaterials due to angled sidewalls,” Opt. Express17, 6782–6789 (2009).
    [CrossRef] [PubMed]
  31. T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, “Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique,” Int. J. for Numer. Meth. Eng.71, 1261–1296 (2007).
    [CrossRef]
  32. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nature Photonics4, 466–470 (2010).
    [CrossRef]
  33. H. Yoshida, T. Matsui, A. Miura, N. Ikeda, M. Ochiai, Y. Sugimoto, H. Fujikawa, and M. Ozaki, “Uniform liquid crystal alignment on metallic nanohole arrays by vapor-phase deposition of silane coupling agent,” Opt. Mater. Express2, 893–899 (2012).
    [CrossRef]

2013 (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

2012 (5)

H. Yoshida, T. Matsui, A. Miura, N. Ikeda, M. Ochiai, Y. Sugimoto, H. Fujikawa, and M. Ozaki, “Uniform liquid crystal alignment on metallic nanohole arrays by vapor-phase deposition of silane coupling agent,” Opt. Mater. Express2, 893–899 (2012).
[CrossRef]

T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design,” Opt. Express20, 16092–16103 (2012).
[CrossRef] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for cmos image sensor applications,” Nano Lett.12, 4349–4354 (2012).
[CrossRef] [PubMed]

A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
[CrossRef]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

2011 (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107, 043903 (2011).
[CrossRef] [PubMed]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98, 093113 (2011).
[CrossRef]

2010 (2)

S. Wang, F. Garet, K. Blary, C. Croënne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys.107, 074510 (2010).
[CrossRef]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nature Photonics4, 466–470 (2010).
[CrossRef]

2009 (3)

2008 (3)

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.101, 103902 (2008).
[CrossRef] [PubMed]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452, 728–731 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

2007 (4)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007).
[CrossRef] [PubMed]

S. Collin, F. Pardo, and J. L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express15, 4310–4320 (2007).
[CrossRef] [PubMed]

T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, “Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique,” Int. J. for Numer. Meth. Eng.71, 1261–1296 (2007).
[CrossRef]

A. Ourir, S. N. Burokur, and A. D. Lustrac, “Phase-varying metamaterial for compact steerable directive antenna,” Electron. Lett.43, 493–494 (2007).
[CrossRef]

2006 (5)

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B74, 153411 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312, 892–894 (2006).
[CrossRef] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96, 097401 (2006).
[CrossRef] [PubMed]

H. Chen, B. I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett.89, 053509 (2006).
[CrossRef]

A. Ourir, A. D. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88, 084103 (2006).
[CrossRef]

2005 (2)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express13, 1933–1938 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Bravo-Abad, F. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett.93, 227401 (2004).
[CrossRef] [PubMed]

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, “Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance,” J. Appl. Phys.95, 793–805 (2004).
[CrossRef]

1998 (2)

A. D. Rakić, A. B. Djurišíc, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37, 5271–5283 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Asakawa, K.

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for cmos image sensor applications,” Nano Lett.12, 4349–4354 (2012).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nature Photonics4, 466–470 (2010).
[CrossRef]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

Blary, K.

S. Wang, F. Garet, K. Blary, C. Croënne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys.107, 074510 (2010).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abad, F. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett.93, 227401 (2004).
[CrossRef] [PubMed]

Bröll, M.

A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
[CrossRef]

Brolo, A. G.

Brueck, S.

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for cmos image sensor applications,” Nano Lett.12, 4349–4354 (2012).
[CrossRef] [PubMed]

Burokur, S. N.

A. Ourir, S. N. Burokur, and A. D. Lustrac, “Phase-varying metamaterial for compact steerable directive antenna,” Electron. Lett.43, 493–494 (2007).
[CrossRef]

Capasso, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express17, 19996–20011 (2009).
[CrossRef] [PubMed]

Chen, H.

H. Chen, B. I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett.89, 053509 (2006).
[CrossRef]

Collin, S.

Coutaz, J.-L.

S. Wang, F. Garet, K. Blary, C. Croënne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys.107, 074510 (2010).
[CrossRef]

Croënne, C.

S. Wang, F. Garet, K. Blary, C. Croënne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys.107, 074510 (2010).
[CrossRef]

Djurišíc, A. B.

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312, 892–894 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Elazar, J. M.

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312, 892–894 (2006).
[CrossRef] [PubMed]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nature Photonics4, 466–470 (2010).
[CrossRef]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nature Photonics4, 466–470 (2010).
[CrossRef]

Fujikawa, H.

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

García-Meca, C.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79, 075425 (2009).
[CrossRef]

Garcia-Vidal, F. J.

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.101, 103902 (2008).
[CrossRef] [PubMed]

García-Vidal, F.

J. Bravo-Abad, F. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett.93, 227401 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B74, 153411 (2006).
[CrossRef]

Garet, F.

S. Wang, F. Garet, K. Blary, C. Croënne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys.107, 074510 (2010).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007).
[CrossRef] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Genov, D.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Gordon, R.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B74, 153411 (2006).
[CrossRef]

R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express13, 1933–1938 (2005).
[CrossRef] [PubMed]

Grzegorczyk, T. M.

H. Chen, B. I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett.89, 053509 (2006).
[CrossRef]

Hangyo, M.

Harland, M.

A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
[CrossRef]

Heitmann, D.

A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
[CrossRef]

Heyn, C.

A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
[CrossRef]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Ikeda, N.

Inoue, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98, 093113 (2011).
[CrossRef]

Jimba, Y.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, “Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance,” J. Appl. Phys.95, 793–805 (2004).
[CrossRef]

Kashiwa, T.

T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, “Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique,” Int. J. for Numer. Meth. Eng.71, 1261–1296 (2007).
[CrossRef]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Koide, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98, 093113 (2011).
[CrossRef]

Kong, J. A.

H. Chen, B. I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett.89, 053509 (2006).
[CrossRef]

Ku, Z.

Kumar, L. K. S.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B74, 153411 (2006).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96, 097401 (2006).
[CrossRef] [PubMed]

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, “Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance,” J. Appl. Phys.95, 793–805 (2004).
[CrossRef]

Lalanne, P.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107, 043903 (2011).
[CrossRef] [PubMed]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452, 728–731 (2008).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Lheurette, E.

S. Wang, F. Garet, K. Blary, C. Croënne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys.107, 074510 (2010).
[CrossRef]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nature Photonics4, 466–470 (2010).
[CrossRef]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312, 892–894 (2006).
[CrossRef] [PubMed]

Lippens, D.

S. Wang, F. Garet, K. Blary, C. Croënne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys.107, 074510 (2010).
[CrossRef]

Liu, H.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452, 728–731 (2008).
[CrossRef] [PubMed]

Liu, H. T.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107, 043903 (2011).
[CrossRef] [PubMed]

Loncar, M.

Lourtioz, J. M.

A. Ourir, A. D. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88, 084103 (2006).
[CrossRef]

Lustrac, A. D.

A. Ourir, S. N. Burokur, and A. D. Lustrac, “Phase-varying metamaterial for compact steerable directive antenna,” Electron. Lett.43, 493–494 (2007).
[CrossRef]

A. Ourir, A. D. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88, 084103 (2006).
[CrossRef]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).

Majewski, M. L.

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Martí, J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79, 075425 (2009).
[CrossRef]

Martínez, A.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79, 075425 (2009).
[CrossRef]

Martin-Moreno, L.

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.101, 103902 (2008).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B74, 153411 (2006).
[CrossRef]

J. Bravo-Abad, F. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett.93, 227401 (2004).
[CrossRef] [PubMed]

Mary, A.

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.101, 103902 (2008).
[CrossRef] [PubMed]

Matsui, T.

Mendach, S.

A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
[CrossRef]

Miura, A.

Miyano, K.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, “Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance,” J. Appl. Phys.95, 793–805 (2004).
[CrossRef]

Miyazaki, H.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, “Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance,” J. Appl. Phys.95, 793–805 (2004).
[CrossRef]

Miyazaki, H. T.

T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design,” Opt. Express20, 16092–16103 (2012).
[CrossRef] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96, 097401 (2006).
[CrossRef] [PubMed]

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, “Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance,” J. Appl. Phys.95, 793–805 (2004).
[CrossRef]

Moreno, E.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B74, 153411 (2006).
[CrossRef]

Nishiwaki, S.

T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, “Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique,” Int. J. for Numer. Meth. Eng.71, 1261–1296 (2007).
[CrossRef]

Nomura, T.

T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design,” Opt. Express20, 16092–16103 (2012).
[CrossRef] [PubMed]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98, 093113 (2011).
[CrossRef]

T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, “Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique,” Int. J. for Numer. Meth. Eng.71, 1261–1296 (2007).
[CrossRef]

Ochiai, M.

Ortuño, R.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79, 075425 (2009).
[CrossRef]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Ourir, A.

A. Ourir, S. N. Burokur, and A. D. Lustrac, “Phase-varying metamaterial for compact steerable directive antenna,” Electron. Lett.43, 493–494 (2007).
[CrossRef]

A. Ourir, A. D. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88, 084103 (2006).
[CrossRef]

Ozaki, M.

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Pardo, F.

Pelouard, J. L.

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nature Photonics4, 466–470 (2010).
[CrossRef]

Rakic, A. D.

Ran, L.

H. Chen, B. I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett.89, 053509 (2006).
[CrossRef]

Rodrigo, S. G.

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.101, 103902 (2008).
[CrossRef] [PubMed]

Rodríguez-Fortuño, F. J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79, 075425 (2009).
[CrossRef]

Rottler, A.

A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
[CrossRef]

Sato, K.

T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design,” Opt. Express20, 16092–16103 (2012).
[CrossRef] [PubMed]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98, 093113 (2011).
[CrossRef]

T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, “Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique,” Int. J. for Numer. Meth. Eng.71, 1261–1296 (2007).
[CrossRef]

Sauvan, C.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107, 043903 (2011).
[CrossRef] [PubMed]

Schwaiger, S.

A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
[CrossRef]

Shinya, N.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, “Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance,” J. Appl. Phys.95, 793–805 (2004).
[CrossRef]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312, 892–894 (2006).
[CrossRef] [PubMed]

Stemmann, A.

A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
[CrossRef]

Stickler, D.

A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
[CrossRef]

Sugimoto, Y.

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Taguchi, K.

T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, “Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique,” Int. J. for Numer. Meth. Eng.71, 1261–1296 (2007).
[CrossRef]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Tsuya, D.

T. Matsui, H. T. Miyazaki, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, M. Ochiai, Y. Sugimoto, M. Ozaki, M. Hangyo, and K. Asakawa, “Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design,” Opt. Express20, 16092–16103 (2012).
[CrossRef] [PubMed]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98, 093113 (2011).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Wang, S.

S. Wang, F. Garet, K. Blary, C. Croënne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys.107, 074510 (2010).
[CrossRef]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312, 892–894 (2006).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

Woolf, D.

Wu, B. I.

H. Chen, B. I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett.89, 053509 (2006).
[CrossRef]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Yang, J.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107, 043903 (2011).
[CrossRef] [PubMed]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for cmos image sensor applications,” Nano Lett.12, 4349–4354 (2012).
[CrossRef] [PubMed]

Yoshida, H.

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Zhang, J.

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

H. Chen, B. I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett.89, 053509 (2006).
[CrossRef]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98, 093113 (2011).
[CrossRef]

A. Rottler, M. Harland, M. Bröll, S. Schwaiger, D. Stickler, A. Stemmann, C. Heyn, D. Heitmann, and S. Mendach, “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type gaas-metal metamaterials with negative refractive index at near-infrared frequencies,” Appl. Phys. Lett.100, 151104 (2012).
[CrossRef]

A. Ourir, A. D. Lustrac, and J. M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett.88, 084103 (2006).
[CrossRef]

Electron. Lett. (1)

A. Ourir, S. N. Burokur, and A. D. Lustrac, “Phase-varying metamaterial for compact steerable directive antenna,” Electron. Lett.43, 493–494 (2007).
[CrossRef]

Int. J. for Numer. Meth. Eng. (1)

T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, “Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique,” Int. J. for Numer. Meth. Eng.71, 1261–1296 (2007).
[CrossRef]

J. Appl. Phys. (2)

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, “Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance,” J. Appl. Phys.95, 793–805 (2004).
[CrossRef]

S. Wang, F. Garet, K. Blary, C. Croënne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys.107, 074510 (2010).
[CrossRef]

Nano Lett. (2)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for cmos image sensor applications,” Nano Lett.12, 4349–4354 (2012).
[CrossRef] [PubMed]

Nature (5)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–379 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998).
[CrossRef]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452, 728–731 (2008).
[CrossRef] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493, 195–199 (2013).
[CrossRef] [PubMed]

Nature Photonics (1)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nature Photonics4, 466–470 (2010).
[CrossRef]

Opt. Express (5)

Opt. Mater. Express (1)

Phys. Rev. B (2)

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B74, 153411 (2006).
[CrossRef]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79, 075425 (2009).
[CrossRef]

Phys. Rev. Lett. (5)

A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett.101, 103902 (2008).
[CrossRef] [PubMed]

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107, 043903 (2011).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005).
[CrossRef] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett.96, 097401 (2006).
[CrossRef] [PubMed]

J. Bravo-Abad, F. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett.93, 227401 (2004).
[CrossRef] [PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science312, 892–894 (2006).
[CrossRef] [PubMed]

Other (1)

S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Unit cell structure of periodic SHA. (b) Geometric arrangement of transition SHA. The double-headed arrow represents the incident polarization direction. (c) Schematic of inclined wavefront produced by transition SHA.

Fig. 2
Fig. 2

(a) Dispersion of an IMIMI structure for an outer SPP (black solid line) and a gap SPP (dashed line). The gray vertical line represents the reciprocal lattice vector for periodic holes with y-polarized normal incident light. (b) Numerically calculated transmittance. The double-headed arrows indicate the incident polarization direction. (c) Numerically calculated phase relative to that in a vacuum layer having the same thickness as the SHA. (d) Magnified plots of the transmitted phase near 0.83 eV for various side lengths wx.

Fig. 3
Fig. 3

(a) Structure for achieving an inclined wavefront using a transition SHA. From the left side, the 11 holes in the transition SHA have wx values of 0.4a, 0.408a, 0.415a, 0.425a, 0.435a, 0.45a, 0.465a, 0.485a, 0.51a, 0.55a, and 0.6a. (b) Numerical results for the phase in the transition region.

Fig. 4
Fig. 4

(a) Geometry of the fabricated structure. (b)–(d) Scanning electron micrographs of the fabricated SHA. (b) Transition region in which the rectangular holes are gradually varying in shape. (c) Top view of narrow SHA (wx=0.4a). (d) Top view of wide SHA (wx=0.6a).

Fig. 5
Fig. 5

(a) Calculated (lines) and measured (symbols) transmission spectra for a narrow SHA (blue) and a wide SHA (orange). (b) Transmission phase for a narrow SHA and a wide SHA.

Fig. 6
Fig. 6

(a) Interferometric images of the fabricated structure at a frequency of 0.827 eV. (b) Images at 0.810 eV. (c) Magnified portion of (b) and the corresponding region in the fabricated structure. (d) Phase distribution determined from analysis of the interferometric images at various frequencies. The horizontal axis represents the position from the center of the transition region.

Fig. 7
Fig. 7

(a) Experimental setup based on a near-infrared microscope (Olympus, BX-51IR). L, laser illumination from wavelength tunable laser (λ =1470 – 1545 nm); S, Sample; OL, objective lens (Olympus LMPlanIR, 50X); FP, back focal plane of the OL (Fourier Plane); M, mirror; IL, imaging lens; A, variable aperture; L1, L2 lens; BS, beam splitter; CCD1, USB visible camera; CCD2, near-infrared camera; IM-1, schematic of the top viewed sample, color relations are same as Fig. 4(a); IM-2, schematic of the real space image created on CCD1; IM-3, schematic of the Fourier image created on CCD2. (b) Cut line plots of the Fourier images. Inset images are Fourier images corresponding to the energies of 0.821 eV, 0.816 eV, 0.810 eV and 0.805 eV from the top, respectively. White dashed line on the inset images represents kx/k0 = 0.

Metrics