Abstract

This paper presents a nanometer-sized metallic film periodically pierced by narrow slits with ellipse walls deposited on a substrate that demonstrates special optical properties of broadband extraordinary optical transmission (BEOT). Compared to slits with straight walls, the metal slits with nonlinearly tapered ellipse walls can collect more light on the upper surface, which is coupled into a gap plasmon polariton propagating along the ellipse walls, then delivers the light at the smaller exit slit opening. In the visible spectral region, BEOT of TM-polarized light is achieved with up to 80% transmission at resonance, which is resulted from the simultaneous enhancement of zero-order slit resonance and higher-order slit resonances excited due to the existence of the substrate. The spectral range of BEOT is limited by Wood-Rayleigh anomalies and surface plasmon polariton resonances (SPPs). The BEOT spectrum of oblique incidence with small incident angle that is divided into two separate bands are also presented and analyzed theoretically. This metallic grating overcomes the low optical transmission limit of the structures with wavelength-sized grating period in visible and near-IR regions. It can be used to design nanostructured BEOT polarizer, which is an important component in novel biomimetic-based optoelectronic systems especially those in skylight polarized environment.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  2. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B58(23), 15419–15421 (1998).
    [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
    [CrossRef]
  4. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett.104(2), 027401 (2010).
    [CrossRef] [PubMed]
  5. Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
    [CrossRef]
  6. C.-H. Park, Y.-T. Yoon, and S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express20(21), 23769–23777 (2012).
    [CrossRef] [PubMed]
  7. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009).
    [CrossRef] [PubMed]
  8. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
    [CrossRef]
  9. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
    [CrossRef]
  10. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
    [CrossRef]
  11. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
    [CrossRef] [PubMed]
  12. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002).
    [CrossRef]
  13. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
    [CrossRef] [PubMed]
  14. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005).
    [CrossRef] [PubMed]
  15. T. Ongarello, F. Romanato, P. Zilio, and M. Massari, “Polarization independence of extraordinary transmission trough 1D metallic gratings,” Opt. Express19(10), 9426–9433 (2011).
    [CrossRef] [PubMed]
  16. A. T. Rahman, P. Majewski, and K. Vasilev, “Extraordinary optical transmission: coupling of the Wood-Rayleigh anomaly and the Fabry-Perot resonance,” Opt. Lett.37(10), 1742–1744 (2012).
    [CrossRef] [PubMed]
  17. T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
    [CrossRef] [PubMed]
  18. J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys.13(6), 063029 (2011).
    [CrossRef]
  19. H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett.100(24), 241104 (2012).
    [CrossRef]
  20. S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-Inspired polarized skylight-based navigation sensor: a review,” Sensors (Basel Switzerland)12(11), 14232–14261 (2012).
    [CrossRef]
  21. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B29(1), 130–137 (2012).
    [CrossRef]
  22. Y. Liang and W. Peng, “Theoretical study of transmission characteristics of subwavelength nanostructured metallic grating,” Appl. Spec.67(1), 49–53 (2013).
    [CrossRef]
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  24. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. Lett.77(7), 075401 (2008).
  25. L. Rayleigh, “On the dynamical theory of gratings,” Proc. Roy. Soc. London, Ser. A.79(532), 399–416 (1907).
    [CrossRef]

2013 (1)

Y. Liang and W. Peng, “Theoretical study of transmission characteristics of subwavelength nanostructured metallic grating,” Appl. Spec.67(1), 49–53 (2013).
[CrossRef]

2012 (6)

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B29(1), 130–137 (2012).
[CrossRef]

A. T. Rahman, P. Majewski, and K. Vasilev, “Extraordinary optical transmission: coupling of the Wood-Rayleigh anomaly and the Fabry-Perot resonance,” Opt. Lett.37(10), 1742–1744 (2012).
[CrossRef] [PubMed]

C.-H. Park, Y.-T. Yoon, and S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
[CrossRef]

H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett.100(24), 241104 (2012).
[CrossRef]

S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-Inspired polarized skylight-based navigation sensor: a review,” Sensors (Basel Switzerland)12(11), 14232–14261 (2012).
[CrossRef]

2011 (2)

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys.13(6), 063029 (2011).
[CrossRef]

T. Ongarello, F. Romanato, P. Zilio, and M. Massari, “Polarization independence of extraordinary transmission trough 1D metallic gratings,” Opt. Express19(10), 9426–9433 (2011).
[CrossRef] [PubMed]

2010 (3)

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett.104(2), 027401 (2010).
[CrossRef] [PubMed]

2009 (1)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

2008 (2)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. Lett.77(7), 075401 (2008).

2005 (2)

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
[CrossRef] [PubMed]

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005).
[CrossRef] [PubMed]

2002 (2)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

2000 (1)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B58(23), 15419–15421 (1998).
[CrossRef]

1907 (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. Roy. Soc. London, Ser. A.79(532), 399–416 (1907).
[CrossRef]

Astilean, S.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

Bardou, N.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett.104(2), 027401 (2010).
[CrossRef] [PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Beermann, J.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B29(1), 130–137 (2012).
[CrossRef]

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys.13(6), 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B29(1), 130–137 (2012).
[CrossRef]

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys.13(6), 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
[CrossRef] [PubMed]

Collin, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett.104(2), 027401 (2010).
[CrossRef] [PubMed]

Devaux, E.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B29(1), 130–137 (2012).
[CrossRef]

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys.13(6), 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Diah, S. Z. M.

S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-Inspired polarized skylight-based navigation sensor: a review,” Sensors (Basel Switzerland)12(11), 14232–14261 (2012).
[CrossRef]

Ebbesen, T. W.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B29(1), 130–137 (2012).
[CrossRef]

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys.13(6), 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

García-Vidal, F. J.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. Lett.77(7), 075401 (2008).

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

Gebeshuber, I. C.

S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-Inspired polarized skylight-based navigation sensor: a review,” Sensors (Basel Switzerland)12(11), 14232–14261 (2012).
[CrossRef]

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Haïdar, R.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett.104(2), 027401 (2010).
[CrossRef] [PubMed]

Heitmann, D.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B58(23), 15419–15421 (1998).
[CrossRef]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

Karman, S. B.

S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-Inspired polarized skylight-based navigation sensor: a review,” Sensors (Basel Switzerland)12(11), 14232–14261 (2012).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

Lee, K. G.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005).
[CrossRef] [PubMed]

Lee, S.-S.

C.-H. Park, Y.-T. Yoon, and S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Liang, Y.

Y. Liang and W. Peng, “Theoretical study of transmission characteristics of subwavelength nanostructured metallic grating,” Appl. Spec.67(1), 49–53 (2013).
[CrossRef]

Maes, B.

H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett.100(24), 241104 (2012).
[CrossRef]

Majewski, P.

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Martín-Moreno, L.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. Lett.77(7), 075401 (2008).

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

Massari, M.

Møller, K. D.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

Novikov, S. M.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B29(1), 130–137 (2012).
[CrossRef]

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys.13(6), 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Ongarello, T.

Palamaru, M.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

Park, C.-H.

C.-H. Park, Y.-T. Yoon, and S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
[CrossRef]

Park, Q. H.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005).
[CrossRef] [PubMed]

Pelouard, J.-L.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett.104(2), 027401 (2010).
[CrossRef] [PubMed]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Peng, W.

Y. Liang and W. Peng, “Theoretical study of transmission characteristics of subwavelength nanostructured metallic grating,” Appl. Spec.67(1), 49–53 (2013).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Rahman, A. T.

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” Proc. Roy. Soc. London, Ser. A.79(532), 399–416 (1907).
[CrossRef]

Rodrigo, S. G.

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. Lett.77(7), 075401 (2008).

Romanato, F.

Rommeluère, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett.104(2), 027401 (2010).
[CrossRef] [PubMed]

Schröter, U.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B58(23), 15419–15421 (1998).
[CrossRef]

Shen, H.

H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett.100(24), 241104 (2012).
[CrossRef]

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
[CrossRef] [PubMed]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

Søndergaard, T.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B29(1), 130–137 (2012).
[CrossRef]

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys.13(6), 063029 (2011).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Vasilev, K.

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Vincent, G.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett.104(2), 027401 (2010).
[CrossRef] [PubMed]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Yoon, Y.-T.

Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
[CrossRef]

C.-H. Park, Y.-T. Yoon, and S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express20(21), 23769–23777 (2012).
[CrossRef] [PubMed]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Zilio, P.

Appl. Phys. Express (1)

Y.-T. Yoon, C.-H. Park, and S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett.100(24), 241104 (2012).
[CrossRef]

Appl. Spec. (1)

Y. Liang and W. Peng, “Theoretical study of transmission characteristics of subwavelength nanostructured metallic grating,” Appl. Spec.67(1), 49–53 (2013).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett.10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photonics2(3), 161–164 (2008).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

New J. Phys. (1)

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys.13(6), 063029 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B58(23), 15419–15421 (1998).
[CrossRef]

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66(15), 155412 (2002).
[CrossRef]

Phys. Rev. Lett. (6)

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett.94(19), 197401 (2005).
[CrossRef] [PubMed]

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett.95(10), 103902 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. Lett.77(7), 075401 (2008).

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane,” Phys. Rev. Lett.104(2), 027401 (2010).
[CrossRef] [PubMed]

Proc. Roy. Soc. London, Ser. A. (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. Roy. Soc. London, Ser. A.79(532), 399–416 (1907).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Sensors (Basel Switzerland) (1)

S. B. Karman, S. Z. M. Diah, and I. C. Gebeshuber, “Bio-Inspired polarized skylight-based navigation sensor: a review,” Sensors (Basel Switzerland)12(11), 14232–14261 (2012).
[CrossRef]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of metallic grating with nonlinearly tapered ellipse walls and a comparable grating with tapered walls. (a) Metallic grating with ellipse walls slit array deposited on substrate. (b) Cross-section of metallic grating with ellipse walls slit array. (c) Cross-section of tapered metallic grating.

Fig. 2
Fig. 2

Transmission spectra of metallic grating with nonlinearly tapered ellipse walls for a range of semi-minor axis δ in the case of fixed P = 500 nm and b = 100 nm. (a) TM-polarized light with semi-major axis h = 228 nm. (b) TE-polarized light with semi-major axis h = 228 nm. (c) Extinction ratio with semi-major axis h = 228 nm. (d) TM-polarized light with semi-major axis h = 400 nm. (e) TE-polarized light with semi-major axis h = 400 nm. (f) Extinction ratio with semi-major axis h = 400 nm. (g) TM-polarized light with semi-major axis h = 700 nm. (h) TE-polarized light with semi-major axis h = 700 nm. (i) Extinction ratio with semi-major axis h = 700 nm.

Fig. 3
Fig. 3

Transmission spectra of tapered metallic grating for a range of semi-minor axis δ in the case of fixed P = 500 nm and b = 100 nm. (a) TM-polarized light with film thickness h = 228 nm. (b) TE-polarized light with film thickness h = 228 nm. (c) Extinction ratio with film thickness h = 228 nm. (d) TM-polarized light with film thickness h = 400 nm. (e) TE-polarized light with film thickness h = 400 nm. (f) Extinction ratio with film thickness h = 400 nm. (g) TM-polarized light with film thickness h = 700 nm. (h) TE-polarized light with film thickness h = 700 nm. (i) Extinction ratio with film thickness h = 700 nm.

Fig. 4
Fig. 4

Transmission spectra of metallic grating with nonlinearly tapered ellipse walls slits array change with its slit opening at the bottom (grating period P = 500 nm and height of the slits h = 400 nm). (a) Transmission of TM-polarized light. (b) Transmission of TE-polarized light. (c) Extinction ratio.

Fig. 5
Fig. 5

Spatial field distribution at the wavelength 670 nm with fixed P = 500 nm, b = 100 nm and semi-major axis h = 228 nm. (a) Magnetic intensity with δ = 160 nm. (b) Magnetic intensity with δ = 0 nm. (c) Electric intensity with δ = 160 nm. (d) Electric intensity with δ = 0 nm.

Fig. 6
Fig. 6

Transmission versus wavelength of normally incident light and film thickness h with fixed P = 500 nm, b = 100 nm. (a) Total transmission with δ = 160 nm. (b) Total transmission with δ = 0 nm. (c) Zero-order transmission with δ = 160 nm. (d) Zero-order transmission with δ = 0 nm. (e) High-order (one-order) transmission with δ = 160 nm. (f) High-order (one-order) transmission with δ = 0 nm.

Fig. 7
Fig. 7

Transmission versus wavelength of normally incident light and period P with fixed b = 100 nm, film thickness h = 350 nm. (a) Transmission with δ = 160 nm. (b) Logarithmic result of transmission with δ = 160 nm. (c) Transmission with δ = 0 nm. (d) Logarithmic result of transmission with δ = 0 nm.

Fig. 8
Fig. 8

Transmission versus wavelength and incident angle and Spatial field distribution with fixed P = 500 nm, b = 100 nm, h = 228 nm and δ = 160 nm. (a) Transmission in a linear map. (b) Transmission in a logarithmic map. (c) Real part distribution of electric field (Ey) and magnetic field (Hz) with incident angle 10° and wavelength 692 nm. (d) Real part distribution of electric field (Ey) and magnetic field (Hz) with incident angle 10° and wavelength 856 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε m ( ω )= ε r - ω P0 2 ω( ω+i γ 0 ) - Δ ε 0 Ω 0 2 ω 2 - Ω 0 2 +iω Γ 0
2π λ sinθ-n 2π P =- 2π λ ε m (ω)ε ε m (ω)+ε = k spp n=0,±1,±2,...,±N
λ= ε P(1+sinθ)
2 β GP (z)dz+ Φ R =2mπm=0,1,2,...,N

Metrics