Abstract

Orthogonal transmission with frequency division multiplexing technique is investigated for next generation optical communication systems. Coherent optical orthogonal frequency division multiplexing (OFDM) and single-carrier frequency division multiplexing (SCFDM) schemes are compared in combination with polarization-division multiplexing quadrature phase shift keying (QPSK) or 16-QAM (quadrature amplitude modulation) formats. Multi-granularity transmission with flexible bandwidth can be realized through ultra-dense wavelength division multiplexing (UDWDM) based on the orthogonal technique. The system performance is numerically studied with special emphasis on transmission degradations due to fiber Kerr nonlinearity. The maximum reach and fiber capacity for different spectral efficiencies are investigated for systems with nonlinear propagation over uncompensated standard single-mode fiber (SSMF) links with lumped amplification.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. 3rd Generation Partnership Project, “Physical layer aspects for evolved universal terrestrial Radio access (UTRA),” http://www.3gpp.org/ftp/Specs/html-info/25814.htm .
  2. R. Dischler and F. Buchali, “Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” in Proc. Optical Fiber Communication Conference 2009, Paper PDPC2.
  3. X. Yi, N. Fontaine, R. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Technol.28(14), 2054–2061 (2010).
    [CrossRef]
  4. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol.28(4), 308–315 (2010).
    [CrossRef]
  5. J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
    [CrossRef]
  6. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckha, “Transmission of a 1.2-Tb/s 24-Carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in Proc. 35 th European Conference on Optical Communication, 2009, Paper PD2.6.
  7. A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: a review of the first five years,” Opt. Fiber Technol.17(5), 421–438 (2011).
    [CrossRef]
  8. J. Li, S. Zhang, F. Zhang, and Z. Chen, “A novel coherent optical single-carrier frequency-division-multiplexing (CO-SCFDM) scheme for optical fiber transmission systems,” Photonics in Switching 2010, Paper JTuB41.
  9. Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
    [CrossRef]
  10. S. Sesia, I. Toufik, and M. Baker, LTE-The UMTS Long Term Evolution: from theory to practice (John Wiley & Sons Ltd., 2009), Chap. 15.
  11. C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08 Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express20(2), 787–793 (2012).
    [CrossRef] [PubMed]
  12. Q. Yang, Z. He, Z. Yang, S. Yu, X. Yi, and W. Shieh, “Coherent optical DFT-Spread OFDM transmission using orthogonal band multiplexing,” Opt. Express20(3), 2379–2385 (2012).
    [CrossRef] [PubMed]
  13. Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM Functionality on an optical SCFDM Superchannel,” IEEE Photon. Technol. Lett.24(3), 215–217 (2012).
    [CrossRef]
  14. A. Klekamp, R. Dischler, and F. Buchali, “Limits of spectral efficiency and transmission reach of optical-OFDM Superchannels for adaptive Networks,” IEEE Photon. Technol. Lett.23(20), 1526–1528 (2011).
    [CrossRef]
  15. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express16(26), 21944–21957 (2008).
    [CrossRef] [PubMed]
  16. X. Liu and F. Buchali, “A novel channel estimation method for PDM-OFDM enabling improved tolerance to WDM nonlinearity,” in Proc. Optical Fiber Communication Conference 2009, Paper OWW5.
  17. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
    [CrossRef]
  18. D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory18(4), 531–532 (1972).
    [CrossRef]
  19. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory29(4), 543–551 (1983).
    [CrossRef]
  20. I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett.22(9), 631–633 (2010).
    [CrossRef]
  21. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Commun.E92-B(12), 3736–3743 (2009).
    [CrossRef]

2012 (3)

2011 (3)

A. Klekamp, R. Dischler, and F. Buchali, “Limits of spectral efficiency and transmission reach of optical-OFDM Superchannels for adaptive Networks,” IEEE Photon. Technol. Lett.23(20), 1526–1528 (2011).
[CrossRef]

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: a review of the first five years,” Opt. Fiber Technol.17(5), 421–438 (2011).
[CrossRef]

2010 (5)

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

X. Yi, N. Fontaine, R. Scott, and S. Yoo, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Technol.28(14), 2054–2061 (2010).
[CrossRef]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol.28(4), 308–315 (2010).
[CrossRef]

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
[CrossRef]

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett.22(9), 631–633 (2010).
[CrossRef]

2009 (1)

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Commun.E92-B(12), 3736–3743 (2009).
[CrossRef]

2008 (1)

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory29(4), 543–551 (1983).
[CrossRef]

1972 (1)

D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory18(4), 531–532 (1972).
[CrossRef]

Buchali, F.

A. Klekamp, R. Dischler, and F. Buchali, “Limits of spectral efficiency and transmission reach of optical-OFDM Superchannels for adaptive Networks,” IEEE Photon. Technol. Lett.23(20), 1526–1528 (2011).
[CrossRef]

X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express16(26), 21944–21957 (2008).
[CrossRef] [PubMed]

Chang, F.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
[CrossRef]

Chen, S.

Chen, Y.

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08 Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express20(2), 787–793 (2012).
[CrossRef] [PubMed]

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM Functionality on an optical SCFDM Superchannel,” IEEE Photon. Technol. Lett.24(3), 215–217 (2012).
[CrossRef]

Chen, Z.

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08 Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express20(2), 787–793 (2012).
[CrossRef] [PubMed]

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM Functionality on an optical SCFDM Superchannel,” IEEE Photon. Technol. Lett.24(3), 215–217 (2012).
[CrossRef]

Chi, N.

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

Chu, D. C.

D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory18(4), 531–532 (1972).
[CrossRef]

Dischler, R.

A. Klekamp, R. Dischler, and F. Buchali, “Limits of spectral efficiency and transmission reach of optical-OFDM Superchannels for adaptive Networks,” IEEE Photon. Technol. Lett.23(20), 1526–1528 (2011).
[CrossRef]

Dong, Z.

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

Du, L. B.

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: a review of the first five years,” Opt. Fiber Technol.17(5), 421–438 (2011).
[CrossRef]

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett.22(9), 631–633 (2010).
[CrossRef]

Fontaine, N.

He, Y.

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM Functionality on an optical SCFDM Superchannel,” IEEE Photon. Technol. Lett.24(3), 215–217 (2012).
[CrossRef]

He, Z.

Ishihara, K.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Commun.E92-B(12), 3736–3743 (2009).
[CrossRef]

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett.22(9), 631–633 (2010).
[CrossRef]

Klekamp, A.

A. Klekamp, R. Dischler, and F. Buchali, “Limits of spectral efficiency and transmission reach of optical-OFDM Superchannels for adaptive Networks,” IEEE Photon. Technol. Lett.23(20), 1526–1528 (2011).
[CrossRef]

Kobayashi, T.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Commun.E92-B(12), 3736–3743 (2009).
[CrossRef]

Krongold, B. S.

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

Kudo, R.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Commun.E92-B(12), 3736–3743 (2009).
[CrossRef]

Li, J.

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08 Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express20(2), 787–793 (2012).
[CrossRef] [PubMed]

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM Functionality on an optical SCFDM Superchannel,” IEEE Photon. Technol. Lett.24(3), 215–217 (2012).
[CrossRef]

Liu, X.

Lowery, A. J.

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: a review of the first five years,” Opt. Fiber Technol.17(5), 421–438 (2011).
[CrossRef]

Ma, Y.

Miyamoto, Y.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Commun.E92-B(12), 3736–3743 (2009).
[CrossRef]

Mizuochi, T.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
[CrossRef]

Onohara, K.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
[CrossRef]

Sano, A.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Commun.E92-B(12), 3736–3743 (2009).
[CrossRef]

Savory, S. J.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett.22(9), 631–633 (2010).
[CrossRef]

Scott, R.

Shieh, W.

Takatori, Y.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Commun.E92-B(12), 3736–3743 (2009).
[CrossRef]

Tang, Y.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory29(4), 543–551 (1983).
[CrossRef]

Yang, Q.

Yang, Z.

Yi, X.

Yoo, S.

Yu, J.

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

Yu, S.

Zhang, F.

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08 Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express20(2), 787–793 (2012).
[CrossRef] [PubMed]

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM Functionality on an optical SCFDM Superchannel,” IEEE Photon. Technol. Lett.24(3), 215–217 (2012).
[CrossRef]

Zhang, S.

Zhao, C.

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM Functionality on an optical SCFDM Superchannel,” IEEE Photon. Technol. Lett.24(3), 215–217 (2012).
[CrossRef]

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08 Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express20(2), 787–793 (2012).
[CrossRef] [PubMed]

Zhu, L.

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM Functionality on an optical SCFDM Superchannel,” IEEE Photon. Technol. Lett.24(3), 215–217 (2012).
[CrossRef]

C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08 Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express20(2), 787–793 (2012).
[CrossRef] [PubMed]

IEEE Commun. Mag. (1)

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag.48(3), S48–S55 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett.22(9), 631–633 (2010).
[CrossRef]

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200 km Fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

Y. Tang, W. Shieh, and B. S. Krongold, “DFT-spread OFDM for fiber nonlinearity mitigation,” IEEE Photon. Technol. Lett.22(16), 1250–1252 (2010).
[CrossRef]

Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM Functionality on an optical SCFDM Superchannel,” IEEE Photon. Technol. Lett.24(3), 215–217 (2012).
[CrossRef]

A. Klekamp, R. Dischler, and F. Buchali, “Limits of spectral efficiency and transmission reach of optical-OFDM Superchannels for adaptive Networks,” IEEE Photon. Technol. Lett.23(20), 1526–1528 (2011).
[CrossRef]

IEEE Trans. Inf. Theory (2)

D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory18(4), 531–532 (1972).
[CrossRef]

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory29(4), 543–551 (1983).
[CrossRef]

IEICE Trans. Commun. (1)

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Commun.E92-B(12), 3736–3743 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Fiber Technol. (1)

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: a review of the first five years,” Opt. Fiber Technol.17(5), 421–438 (2011).
[CrossRef]

Other (6)

J. Li, S. Zhang, F. Zhang, and Z. Chen, “A novel coherent optical single-carrier frequency-division-multiplexing (CO-SCFDM) scheme for optical fiber transmission systems,” Photonics in Switching 2010, Paper JTuB41.

S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckha, “Transmission of a 1.2-Tb/s 24-Carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in Proc. 35 th European Conference on Optical Communication, 2009, Paper PD2.6.

3rd Generation Partnership Project, “Physical layer aspects for evolved universal terrestrial Radio access (UTRA),” http://www.3gpp.org/ftp/Specs/html-info/25814.htm .

R. Dischler and F. Buchali, “Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” in Proc. Optical Fiber Communication Conference 2009, Paper PDPC2.

S. Sesia, I. Toufik, and M. Baker, LTE-The UMTS Long Term Evolution: from theory to practice (John Wiley & Sons Ltd., 2009), Chap. 15.

X. Liu and F. Buchali, “A novel channel estimation method for PDM-OFDM enabling improved tolerance to WDM nonlinearity,” in Proc. Optical Fiber Communication Conference 2009, Paper OWW5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagrams of PDM-CO-OFDM and PDM-CO-SCFDM systems.

Fig. 2
Fig. 2

Constellation diagrams of PDM CO-OFDM and CO-SCFDM with QPSK mapped. (a) OFDM before equalization; (b) SCFDM before equalization; (c) OFDM after equalization; (d) SCFDM after equalization. FFT granularity is 1024. The OSNR is set as 25 dB.

Fig. 3
Fig. 3

Constellation diagrams of PDM CO-OFDM and CO-SCFDM with 16-QAM mapped. (a) OFDM before equalization; (b) SCFDM before equalization; (c) OFDM after equalization; (d) SCFDM after equalization. FFT granularity is 1024. The OSNR is set as 25 dB.

Fig. 4
Fig. 4

CCDF curves of PAPR of OFDM and SCFDM systems. The granularity of 7.75 GHz with (a) QPSK and (b) 16-QAM formats is considered.

Fig. 5
Fig. 5

System performance for different time- and frequency-averaging channel estimation. QPSK mapped PDM-OFDM/SCFDM signals at the granularity of 7.75 GHz transmit over 50 spans SSMF. The launch power is −6.0 dBm.

Fig. 6
Fig. 6

System performance for different time- and frequency-averaging channel estimation. 16-QAM mapped PDM-OFDM/SCFDM signals at the granularity of 7.75 GHz transmit over 10 spans SSMF. The launch power is −6.0 dBm.

Fig. 7
Fig. 7

System performance versus channel number for different granularities of OFDM systems. (a) QPSK and (b) 16-QAM formats are considered.

Fig. 8
Fig. 8

Transmission reach with BER≤4 × 10−3 versus launch power for QPSK (left column) and 16-QAM (right column) formats mapped in OFDM (squares) and SCFDM (circles) systems. The optical channel spacing is the respective sampling rate.

Fig. 9
Fig. 9

Maximum reach at the threshold of BER = 4 × 10−3 versus fiber capacity in the C-band (top axis) and spectral efficiency (bottom axis) for OFDM-QPSK (squares) and SCFDM-QPSK (circles).

Fig. 10
Fig. 10

Maximum reach at the threshold of BER = 4 × 10−3 versus fiber capacity in the C-band (top axis) and spectral efficiency (bottom axis) for OFDM-16-QAM (squares) and SCFDM-16-QAM (circles).

Fig. 11
Fig. 11

Maximum SE-distance product at the threshold of BER = 4 × 10−3 as a function of the normalized guard band for OFDM-QPSK (squares) and SCFDM-QPSK (circles).

Fig. 12
Fig. 12

Maximum SE-distance product at the threshold of BER = 4 × 10−3 as a function of the normalized guard band for OFDM-16-QAM (squares) and SCFDM-16-QAM (circles).

Tables (2)

Tables Icon

Table 1 OFDM/SCFDM parameters

Tables Icon

Table 2 OFDM system parameters

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

r i =[ F 0 0 F ][ C xx C yx C xy C yy ][ F H 0 0 F H ] a i + w i .
Here             C xx =Circ{ [ h xx 0 (Nl)×1 ] }, C yx =Circ{ [ h yx 0 (Nl)×1 ] },                     C xy =Circ{ [ h xy 0 (Nl)×1 ] }, C yy =Circ{ [ h yy 0 (Nl)×1 ] }.
h xx =[ h xx (0) h xx (1) h xx (l1) ], h yx =[ h yx (0) h yx (1) h yx (l1) ], h xy =[ h xy (0) h xy (1) h xy (l1) ], h yy =[ h yy (0) h yy (1) h yy (l1) ].
f m = 1 N [ 1 e j 2π N m e j 2π( N1 ) N m ] T .
r i =[ F 0 0 F ][ C xx C yx C xy C yy ][ F H 0 0 F H ][ T F ˜ 0 0 T F ˜ ] a i + w i .
T=[ 0 l T ×M I M×M 0 ( N-M- l T )×M ].
P x =[ p x p x ], P y =[ p y p y ].
H=[ H xx H yx H xy H yy ]=[ F 0 0 F ][ C xx C yx C xy C yy ][ F H 0 0 F H ].
[ H ^ xx ( k ) H ^ yx ( k ) H ^ xy ( k ) H ^ yy ( k ) ]= 1 2m+1 k =km k+m 1 2 [ r 1x ( k )+ r 2x ( k ) p x ( k ) r 1x ( k ) r 2x ( k ) p y ( k ) r 1y ( k )+ r 2y ( k ) p x ( k ) r 1y ( k ) r 2y ( k ) p y ( k ) ] .
a ^ i = H ^ 1 r i .
a ^ i =[ F ˜ H T T 0 0 F ˜ H T T ] H ^ 1 r i .
| D ISFA ( ps/nm ) |< 10 6 8π B eff ( GHz )mΔf( GHz ) .

Metrics