Abstract

Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).
  2. E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev.4(4), 481–483 (1997).
    [CrossRef]
  3. P. A. Fomitchov, A. K. Kromine, and S. Krishnaswamy, “Photoacoustic probes for nondestructive testing and biomedical applications,” Appl. Opt.41(22), 4451–4459 (2002).
    [CrossRef] [PubMed]
  4. V. Giurgiutiu, Structural health monitoring with piezoelectric wafer active sensors (Elsevier, 2008).
  5. E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(6), 1669–1680 (2001).
    [CrossRef] [PubMed]
  6. V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
    [CrossRef]
  7. C. I. Swift, S. G. Pierce, and B. Culshaw, “Generation of an ultrasonic beam using imbedded fiber optic delivery and low power laser sources,” Proc. SPIE3986, 20–26 (2000).
    [CrossRef]
  8. S. Baek, Y. Jeong, and B. Lee, “Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors,” Appl. Opt.41(4), 631–636 (2002).
    [CrossRef] [PubMed]
  9. T. Guo, L. Y. Shao, H. Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express17(23), 20651–20660 (2009).
    [CrossRef] [PubMed]
  10. L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightwave Technol.28(18), 2681–2687 (2010).
    [CrossRef]
  11. R. J. Von Gutfeld and H. F. Budd, “Laser-generated MHz elastic-waves from metallic-liquid interfaces,” Appl. Phys. Lett.34(10), 617–619 (1979).
    [CrossRef]
  12. T. Buma, M. Spisar, and M. O'Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett.79(4), 548–550 (2001).
    [CrossRef]
  13. H. Yang, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89(9), 093901 (2006).
    [CrossRef]
  14. H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett.97(23), 234104 (2010).
    [CrossRef] [PubMed]
  15. Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-Phase-shifted fiber Bragg grating on side-hole Fiber,” IEEE Photon. Technol. Lett.24(17), 1519–1522 (2012).
    [CrossRef]
  16. K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett.86(14), 143502 (2005).
    [CrossRef]
  17. J. D. Andrade, R. A. Vanwagenen, D. E. Gregonis, K. Newby, and J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay - concept and progress,” IEEE Trans. Electron. Dev.32(7), 1175–1179 (1985).
    [CrossRef]

2012

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-Phase-shifted fiber Bragg grating on side-hole Fiber,” IEEE Photon. Technol. Lett.24(17), 1519–1522 (2012).
[CrossRef]

2010

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett.97(23), 234104 (2010).
[CrossRef] [PubMed]

L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightwave Technol.28(18), 2681–2687 (2010).
[CrossRef]

2009

T. Guo, L. Y. Shao, H. Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express17(23), 20651–20660 (2009).
[CrossRef] [PubMed]

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
[CrossRef]

2006

H. Yang, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89(9), 093901 (2006).
[CrossRef]

2005

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett.86(14), 143502 (2005).
[CrossRef]

2002

2001

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(6), 1669–1680 (2001).
[CrossRef] [PubMed]

T. Buma, M. Spisar, and M. O'Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett.79(4), 548–550 (2001).
[CrossRef]

2000

C. I. Swift, S. G. Pierce, and B. Culshaw, “Generation of an ultrasonic beam using imbedded fiber optic delivery and low power laser sources,” Proc. SPIE3986, 20–26 (2000).
[CrossRef]

1997

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev.4(4), 481–483 (1997).
[CrossRef]

1985

J. D. Andrade, R. A. Vanwagenen, D. E. Gregonis, K. Newby, and J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay - concept and progress,” IEEE Trans. Electron. Dev.32(7), 1175–1179 (1985).
[CrossRef]

1979

R. J. Von Gutfeld and H. F. Budd, “Laser-generated MHz elastic-waves from metallic-liquid interfaces,” Appl. Phys. Lett.34(10), 617–619 (1979).
[CrossRef]

Albert, J.

Andrade, J. D.

J. D. Andrade, R. A. Vanwagenen, D. E. Gregonis, K. Newby, and J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay - concept and progress,” IEEE Trans. Electron. Dev.32(7), 1175–1179 (1985).
[CrossRef]

Ashkenazi, S.

H. Yang, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89(9), 093901 (2006).
[CrossRef]

Baek, S.

Baldwin, B.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
[CrossRef]

Biagi, E.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(6), 1669–1680 (2001).
[CrossRef] [PubMed]

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev.4(4), 481–483 (1997).
[CrossRef]

Brenci, M.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev.4(4), 481–483 (1997).
[CrossRef]

Budd, H. F.

R. J. Von Gutfeld and H. F. Budd, “Laser-generated MHz elastic-waves from metallic-liquid interfaces,” Appl. Phys. Lett.34(10), 617–619 (1979).
[CrossRef]

Buma, T.

T. Buma, M. Spisar, and M. O'Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett.79(4), 548–550 (2001).
[CrossRef]

Buric, M.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett.86(14), 143502 (2005).
[CrossRef]

Chen, C. K.

Chen, K. P.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett.86(14), 143502 (2005).
[CrossRef]

Chen, S. L.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett.97(23), 234104 (2010).
[CrossRef] [PubMed]

Culshaw, B.

C. I. Swift, S. G. Pierce, and B. Culshaw, “Generation of an ultrasonic beam using imbedded fiber optic delivery and low power laser sources,” Proc. SPIE3986, 20–26 (2000).
[CrossRef]

Fink, T.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-Phase-shifted fiber Bragg grating on side-hole Fiber,” IEEE Photon. Technol. Lett.24(17), 1519–1522 (2012).
[CrossRef]

Flanagan, K.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
[CrossRef]

Fomitchov, P. A.

Fontani, S.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev.4(4), 481–483 (1997).
[CrossRef]

Gregonis, D. E.

J. D. Andrade, R. A. Vanwagenen, D. E. Gregonis, K. Newby, and J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay - concept and progress,” IEEE Trans. Electron. Dev.32(7), 1175–1179 (1985).
[CrossRef]

Guo, L. J.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett.97(23), 234104 (2010).
[CrossRef] [PubMed]

H. Yang, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89(9), 093901 (2006).
[CrossRef]

Guo, T.

Han, M.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-Phase-shifted fiber Bragg grating on side-hole Fiber,” IEEE Photon. Technol. Lett.24(17), 1519–1522 (2012).
[CrossRef]

Hart, A. J.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett.97(23), 234104 (2010).
[CrossRef] [PubMed]

Jeong, Y.

Jewart, C.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett.86(14), 143502 (2005).
[CrossRef]

Kim, J. S.

H. Yang, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89(9), 093901 (2006).
[CrossRef]

Kochergin, E.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
[CrossRef]

Kochergin, V.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
[CrossRef]

Krishnaswamy, S.

Kromine, A. K.

Krug, P. A.

Laronche, A.

Lee, B.

Li, H.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-Phase-shifted fiber Bragg grating on side-hole Fiber,” IEEE Photon. Technol. Lett.24(17), 1519–1522 (2012).
[CrossRef]

Lin, J. N.

J. D. Andrade, R. A. Vanwagenen, D. E. Gregonis, K. Newby, and J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay - concept and progress,” IEEE Trans. Electron. Dev.32(7), 1175–1179 (1985).
[CrossRef]

Ling, T.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett.97(23), 234104 (2010).
[CrossRef] [PubMed]

Liu, N.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-Phase-shifted fiber Bragg grating on side-hole Fiber,” IEEE Photon. Technol. Lett.24(17), 1519–1522 (2012).
[CrossRef]

Margheri, F.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(6), 1669–1680 (2001).
[CrossRef] [PubMed]

Masotti, L.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev.4(4), 481–483 (1997).
[CrossRef]

McMillen, B.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett.86(14), 143502 (2005).
[CrossRef]

Menichelli, D.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(6), 1669–1680 (2001).
[CrossRef] [PubMed]

Newby, K.

J. D. Andrade, R. A. Vanwagenen, D. E. Gregonis, K. Newby, and J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay - concept and progress,” IEEE Trans. Electron. Dev.32(7), 1175–1179 (1985).
[CrossRef]

O’Donnell, M.

H. Yang, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89(9), 093901 (2006).
[CrossRef]

O'Donnell, M.

T. Buma, M. Spisar, and M. O'Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett.79(4), 548–550 (2001).
[CrossRef]

Ok, J. G.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett.97(23), 234104 (2010).
[CrossRef] [PubMed]

Park, H. J.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett.97(23), 234104 (2010).
[CrossRef] [PubMed]

Pedrick, M.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
[CrossRef]

Peng, W.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-Phase-shifted fiber Bragg grating on side-hole Fiber,” IEEE Photon. Technol. Lett.24(17), 1519–1522 (2012).
[CrossRef]

Pieraccini, M.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev.4(4), 481–483 (1997).
[CrossRef]

Pierce, S. G.

C. I. Swift, S. G. Pierce, and B. Culshaw, “Generation of an ultrasonic beam using imbedded fiber optic delivery and low power laser sources,” Proc. SPIE3986, 20–26 (2000).
[CrossRef]

Plaisted, T.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
[CrossRef]

Shao, L. Y.

Shi, Z.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
[CrossRef]

Spisar, M.

T. Buma, M. Spisar, and M. O'Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett.79(4), 548–550 (2001).
[CrossRef]

Swift, C. I.

C. I. Swift, S. G. Pierce, and B. Culshaw, “Generation of an ultrasonic beam using imbedded fiber optic delivery and low power laser sources,” Proc. SPIE3986, 20–26 (2000).
[CrossRef]

Tam, H. Y.

Vanwagenen, R. A.

J. D. Andrade, R. A. Vanwagenen, D. E. Gregonis, K. Newby, and J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay - concept and progress,” IEEE Trans. Electron. Dev.32(7), 1175–1179 (1985).
[CrossRef]

Vicari, L.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
[CrossRef]

Von Gutfeld, R. J.

R. J. Von Gutfeld and H. F. Budd, “Laser-generated MHz elastic-waves from metallic-liquid interfaces,” Appl. Phys. Lett.34(10), 617–619 (1979).
[CrossRef]

Won Baac, H.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett.97(23), 234104 (2010).
[CrossRef] [PubMed]

Xiong, L. Y.

Xu, W.

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett.86(14), 143502 (2005).
[CrossRef]

Yang, H.

H. Yang, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89(9), 093901 (2006).
[CrossRef]

Yellampalle, B.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
[CrossRef]

Zhang, Q.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-Phase-shifted fiber Bragg grating on side-hole Fiber,” IEEE Photon. Technol. Lett.24(17), 1519–1522 (2012).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. J. Von Gutfeld and H. F. Budd, “Laser-generated MHz elastic-waves from metallic-liquid interfaces,” Appl. Phys. Lett.34(10), 617–619 (1979).
[CrossRef]

T. Buma, M. Spisar, and M. O'Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett.79(4), 548–550 (2001).
[CrossRef]

H. Yang, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89(9), 093901 (2006).
[CrossRef]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S. L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett.97(23), 234104 (2010).
[CrossRef] [PubMed]

K. P. Chen, B. McMillen, M. Buric, C. Jewart, and W. Xu, “Self-heated fiber Bragg grating sensors,” Appl. Phys. Lett.86(14), 143502 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

Q. Zhang, N. Liu, T. Fink, H. Li, W. Peng, and M. Han, “Fiber-optic pressure sensor based on π-Phase-shifted fiber Bragg grating on side-hole Fiber,” IEEE Photon. Technol. Lett.24(17), 1519–1522 (2012).
[CrossRef]

IEEE Trans. Electron. Dev.

J. D. Andrade, R. A. Vanwagenen, D. E. Gregonis, K. Newby, and J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay - concept and progress,” IEEE Trans. Electron. Dev.32(7), 1175–1179 (1985).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control48(6), 1669–1680 (2001).
[CrossRef] [PubMed]

J. Lightwave Technol.

Opt. Express

Opt. Rev.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev.4(4), 481–483 (1997).
[CrossRef]

Proc. SPIE

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE7292, 72923D, 72923D-8 (2009).
[CrossRef]

C. I. Swift, S. G. Pierce, and B. Culshaw, “Generation of an ultrasonic beam using imbedded fiber optic delivery and low power laser sources,” Proc. SPIE3986, 20–26 (2000).
[CrossRef]

Other

L. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).

V. Giurgiutiu, Structural health monitoring with piezoelectric wafer active sensors (Elsevier, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conceptual illustration of the distributive fiber-optic laser-ultrasound generation. a, Schematic of the proposed system. b, Transmission spectrum of a TFBG showing the Bragg reflection, ghost mode and cladding mode coupling. c, Laser-ultrasound generation by the ghost mode tapping out of the fiber that induces thermoelastic expansion of the absorption layer. d, TFBG spectrum arrangement to ensure that the light power is tapped out only at selected locations depending on the laser wavelength. e, Numerically-simulated mode-intensity distributions of the four cladding modes (LP11, LP12, LP13, and LP14) that form the ghost mode of a 4° TFBG in a 125 μm regular single-mode fiber [9].

Fig. 2
Fig. 2

Experimental demonstration. a,b, Schematic of the experimental setup. c, d, Transmission spectrum (c) and reflection spectrum (d) of the three TFBGs. e, Picture of one of the laser-ultrasound generation nodes. f, Picture of an etched fiber before a TFBG for tapping out the ghost mode.

Fig. 3
Fig. 3

Laser characteristics. a, Seed laser spectrum. b, Laser pulse measured after the EDFA.

Fig. 4
Fig. 4

Experimental results. a-c, Laser spectrum measured after the three TFBGs when the ghost mode of the BG3 was tuned to be shorter than (a), equal to (b), and longer than (c) the laser peak wavelength. d Ultrasonic signal pulses generated by BG3 and detected by a PZT sensor. Signal was averaged over 10 measurements. e, Enlarged view of an ultrasonic pulse in (d). e, Fourier transform of the data shown in (f).

Fig. 5
Fig. 5

a, Ultrasonic signal pulses generated by BG2 and detected by a PZT sensor. Signal was averaged over 10 measurements. b, Enlarged view of an ultrasonic pulse in (a). c, Fourier transform of the data shown in (b).

Metrics