Abstract

We build up a LD end-pumped Er,Yb:YAB laser at 1.55 μm and improve the laser performance by end cooling the gain medium efficiently through a sapphire plate. 680 mW cw single transverse mode laser output was obtained with the slope efficiency of 16.3%. Using an etalon placed in the laser cavity, 400 mW cw single frequency 1.55 μm laser output was achieved with the slope efficiency of 11.8%. The laser power fluctuation was less than ± 1.3% in a given period of 1.5 hours. The 1.55 μm laser presents low noise properties, that the intensity and the phase noise reach the shot noise level for the analysis frequencies higher than 4 MHz and 5 MHz, respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
    [CrossRef]
  2. B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
    [CrossRef]
  3. M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 µm,” Opt. Lett.30(18), 2418–2420 (2005).
    [CrossRef] [PubMed]
  4. J. H. Huang, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “High efficient 1.56 microm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal,” Opt. Express16(22), 17243–17248 (2008).
    [CrossRef] [PubMed]
  5. S. L. Braunstein and P. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005).
    [CrossRef]
  6. J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3,” Appl. Phys. Lett.92(22), 221102 (2008).
    [CrossRef]
  7. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 .
    [CrossRef] [PubMed]
  8. T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A83(5), 052329 (2011).
    [CrossRef]
  9. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express19(25), 25763–25772 (2011).
    [CrossRef] [PubMed]
  10. S. T. Lin, Y. Y. Lin, Y. C. Huang, A. C. Chiang, and J. T. Shy, “Observation of thermal-induced optical guiding and bistability in a mid-IR continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett.33(20), 2338–2340 (2008).
    [CrossRef] [PubMed]
  11. J. L. Liu, Q. Liu, H. Li, P. Li, and K. S. Zhang, “Low noise, continuous-wave single-frequency 1.5 μm laser generated by a singly resonant optical parametric oscillator,” Chin. Phys. B20(11), 114215 (2011).
    [CrossRef]
  12. S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photon. Technol. Lett.13(1), 19–21 (2001).
    [CrossRef]
  13. R. van Leeuwen, B. Xu, L. S. Watkins, Q. Wang, and C. Ghosh, “Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser,” Proc. SPIE6975, 69750K, 69750K-9 (2008).
    [CrossRef]
  14. G. É. Pillet, L. Ï. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-Frequency Laser at 1.5 mm for Optical Distribution and Generation of High-Purity Microwave Signals,” J. Lightwave Technol.26(15), 2764–2773 (2008).
    [CrossRef]
  15. N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett.32(22), 3233–3235 (2007).
    [CrossRef] [PubMed]
  16. Y. J. Li, P. Li, J. X. Feng, and K. S. Zhang, “Theoretical and experimental investigation of Er3+,Yb3+:YAl3(BO3)4 solid-state laser,” IEEE J. Quantum Electron.submitted.
  17. R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron.34(6), 1046–1053 (1998).
    [CrossRef]
  18. Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er3+,Yb3+: YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett.89(24), 241111 (2006).
    [CrossRef]
  19. M. Tsunekane, N. Taguchi, and H. Inaba, “Reduction of thermal effects in a diode-end-pumped, composite Nd:YAG rod with a sapphire end,” Appl. Opt.37(15), 3290–3294 (1998).
    [CrossRef] [PubMed]
  20. F. Song, S. J. Liu, Z. H. Wu, H. Cai, X. Zhang, L. Teng, and J. G. Tian, “Determination of the thermal loading in laser-diode-pumped erbium-ytterbium-codoped phosphate glass microchip laser,” J. Opt. Soc. Am. B24(9), 2327–2332 (2007).
    [CrossRef]
  21. R. Martínez Vázquez, R. Osellame, M. Marangoni, R. Ramponi, and E. Diéguez, “Er3+ doped YAl3(BO3)4 single crystals: determination of the refractive indices,” Opt. Mater.26(3), 231–233 (2004).
    [CrossRef]
  22. D. Jaque, J. Capmany, J. Rams, and J. G. Sole, “Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” Appl. Phys. (Berl.)87, 1042–1048 (2000).
  23. S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron.22(5), 617–624 (1986).
    [CrossRef]
  24. T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
    [CrossRef]

2011

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A83(5), 052329 (2011).
[CrossRef]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express19(25), 25763–25772 (2011).
[CrossRef] [PubMed]

J. L. Liu, Q. Liu, H. Li, P. Li, and K. S. Zhang, “Low noise, continuous-wave single-frequency 1.5 μm laser generated by a singly resonant optical parametric oscillator,” Chin. Phys. B20(11), 114215 (2011).
[CrossRef]

2010

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 .
[CrossRef] [PubMed]

2008

2007

2006

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er3+,Yb3+: YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett.89(24), 241111 (2006).
[CrossRef]

2005

S. L. Braunstein and P. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005).
[CrossRef]

M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 µm,” Opt. Lett.30(18), 2418–2420 (2005).
[CrossRef] [PubMed]

2004

B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
[CrossRef]

R. Martínez Vázquez, R. Osellame, M. Marangoni, R. Ramponi, and E. Diéguez, “Er3+ doped YAl3(BO3)4 single crystals: determination of the refractive indices,” Opt. Mater.26(3), 231–233 (2004).
[CrossRef]

2001

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photon. Technol. Lett.13(1), 19–21 (2001).
[CrossRef]

2000

D. Jaque, J. Capmany, J. Rams, and J. G. Sole, “Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” Appl. Phys. (Berl.)87, 1042–1048 (2000).

1999

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

1998

M. Tsunekane, N. Taguchi, and H. Inaba, “Reduction of thermal effects in a diode-end-pumped, composite Nd:YAG rod with a sapphire end,” Appl. Opt.37(15), 3290–3294 (1998).
[CrossRef] [PubMed]

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron.34(6), 1046–1053 (1998).
[CrossRef]

1995

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

1986

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron.22(5), 617–624 (1986).
[CrossRef]

Amon, A.

Ast, S.

Bauchrowitz, J.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 .
[CrossRef] [PubMed]

Bramati, A.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

Braunstein, S. L.

S. L. Braunstein and P. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005).
[CrossRef]

Bretenaker, F.

Brunel, M.

Cai, H.

Capmany, J.

D. Jaque, J. Capmany, J. Rams, and J. G. Sole, “Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” Appl. Phys. (Berl.)87, 1042–1048 (2000).

Chen, Y. J.

J. H. Huang, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “High efficient 1.56 microm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal,” Opt. Express16(22), 17243–17248 (2008).
[CrossRef] [PubMed]

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er3+,Yb3+: YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett.89(24), 241111 (2006).
[CrossRef]

Chiang, A. C.

Denker, B.

B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
[CrossRef]

Diéguez, E.

R. Martínez Vázquez, R. Osellame, M. Marangoni, R. Ramponi, and E. Diéguez, “Er3+ doped YAl3(BO3)4 single crystals: determination of the refractive indices,” Opt. Mater.26(3), 231–233 (2004).
[CrossRef]

Dolfi, D.

Duhme, J.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A83(5), 052329 (2011).
[CrossRef]

Eberle, T.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A83(5), 052329 (2011).
[CrossRef]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express19(25), 25763–25772 (2011).
[CrossRef] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 .
[CrossRef] [PubMed]

Feng, J. X.

J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3,” Appl. Phys. Lett.92(22), 221102 (2008).
[CrossRef]

Y. J. Li, P. Li, J. X. Feng, and K. S. Zhang, “Theoretical and experimental investigation of Er3+,Yb3+:YAl3(BO3)4 solid-state laser,” IEEE J. Quantum Electron.submitted.

Franz, T.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A83(5), 052329 (2011).
[CrossRef]

Galagan, B.

B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
[CrossRef]

Ghosh, C.

R. van Leeuwen, B. Xu, L. S. Watkins, Q. Wang, and C. Ghosh, “Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser,” Proc. SPIE6975, 69750K, 69750K-9 (2008).
[CrossRef]

Giacobino, E.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

Gong, X. H.

J. H. Huang, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “High efficient 1.56 microm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal,” Opt. Express16(22), 17243–17248 (2008).
[CrossRef] [PubMed]

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er3+,Yb3+: YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett.89(24), 241111 (2006).
[CrossRef]

Grangier, P.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

Grelu, P.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

Handchen, V.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A83(5), 052329 (2011).
[CrossRef]

Händchen, V.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 .
[CrossRef] [PubMed]

Hellstrom, J. E.

B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
[CrossRef]

Huang, J. H.

Huang, Y. C.

Huang, Y. D.

J. H. Huang, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “High efficient 1.56 microm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal,” Opt. Express16(22), 17243–17248 (2008).
[CrossRef] [PubMed]

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er3+,Yb3+: YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett.89(24), 241111 (2006).
[CrossRef]

Huignard, J.-P.

Inaba, H.

Ivleva, I.

B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
[CrossRef]

Jaque, D.

D. Jaque, J. Capmany, J. Rams, and J. G. Sole, “Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” Appl. Phys. (Berl.)87, 1042–1048 (2000).

Jost, V.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

Karlsson, G.

B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
[CrossRef]

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photon. Technol. Lett.13(1), 19–21 (2001).
[CrossRef]

Kisel, V. E.

Koporulina, E. V.

Kuleshov, N. V.

Kurilchik, S. V.

Laporta, P.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photon. Technol. Lett.13(1), 19–21 (2001).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Laurell, F.

B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
[CrossRef]

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photon. Technol. Lett.13(1), 19–21 (2001).
[CrossRef]

Le Floch, A.

Leonyuk, N. I.

Levenson, M. D.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

Li, H.

J. L. Liu, Q. Liu, H. Li, P. Li, and K. S. Zhang, “Low noise, continuous-wave single-frequency 1.5 μm laser generated by a singly resonant optical parametric oscillator,” Chin. Phys. B20(11), 114215 (2011).
[CrossRef]

Li, P.

J. L. Liu, Q. Liu, H. Li, P. Li, and K. S. Zhang, “Low noise, continuous-wave single-frequency 1.5 μm laser generated by a singly resonant optical parametric oscillator,” Chin. Phys. B20(11), 114215 (2011).
[CrossRef]

Y. J. Li, P. Li, J. X. Feng, and K. S. Zhang, “Theoretical and experimental investigation of Er3+,Yb3+:YAl3(BO3)4 solid-state laser,” IEEE J. Quantum Electron.submitted.

Li, Y. J.

Y. J. Li, P. Li, J. X. Feng, and K. S. Zhang, “Theoretical and experimental investigation of Er3+,Yb3+:YAl3(BO3)4 solid-state laser,” IEEE J. Quantum Electron.submitted.

Li, Y. M.

J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3,” Appl. Phys. Lett.92(22), 221102 (2008).
[CrossRef]

Lin, S. T.

Lin, Y. F.

J. H. Huang, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “High efficient 1.56 microm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal,” Opt. Express16(22), 17243–17248 (2008).
[CrossRef] [PubMed]

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er3+,Yb3+: YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett.89(24), 241111 (2006).
[CrossRef]

Lin, Y. Y.

Liu, J. L.

J. L. Liu, Q. Liu, H. Li, P. Li, and K. S. Zhang, “Low noise, continuous-wave single-frequency 1.5 μm laser generated by a singly resonant optical parametric oscillator,” Chin. Phys. B20(11), 114215 (2011).
[CrossRef]

Liu, Q.

J. L. Liu, Q. Liu, H. Li, P. Li, and K. S. Zhang, “Low noise, continuous-wave single-frequency 1.5 μm laser generated by a singly resonant optical parametric oscillator,” Chin. Phys. B20(11), 114215 (2011).
[CrossRef]

Liu, S. J.

Longhi, S.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Loock, P.

S. L. Braunstein and P. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005).
[CrossRef]

Luo, Z. D.

J. H. Huang, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “High efficient 1.56 microm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal,” Opt. Express16(22), 17243–17248 (2008).
[CrossRef] [PubMed]

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er3+,Yb3+: YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett.89(24), 241111 (2006).
[CrossRef]

Mac Donald, M.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron.34(6), 1046–1053 (1998).
[CrossRef]

Machida, S.

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron.22(5), 617–624 (1986).
[CrossRef]

Maltsev, V. V.

Marangoni, M.

R. Martínez Vázquez, R. Osellame, M. Marangoni, R. Ramponi, and E. Diéguez, “Er3+ doped YAl3(BO3)4 single crystals: determination of the refractive indices,” Opt. Mater.26(3), 231–233 (2004).
[CrossRef]

Marin, F.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

Martínez Vázquez, R.

R. Martínez Vázquez, R. Osellame, M. Marangoni, R. Ramponi, and E. Diéguez, “Er3+ doped YAl3(BO3)4 single crystals: determination of the refractive indices,” Opt. Mater.26(3), 231–233 (2004).
[CrossRef]

Mehmet, M.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express19(25), 25763–25772 (2011).
[CrossRef] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 .
[CrossRef] [PubMed]

Morvan, L. Ï.

Müller-Ebhardt, H.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 .
[CrossRef] [PubMed]

Neuenschwander, B.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron.34(6), 1046–1053 (1998).
[CrossRef]

Osellame, R.

R. Martínez Vázquez, R. Osellame, M. Marangoni, R. Ramponi, and E. Diéguez, “Er3+ doped YAl3(BO3)4 single crystals: determination of the refractive indices,” Opt. Mater.26(3), 231–233 (2004).
[CrossRef]

Osiko, V.

B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
[CrossRef]

Pilipenko, O. V.

Pillet, G. É.

Poizat, J. P.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

Ramponi, R.

R. Martínez Vázquez, R. Osellame, M. Marangoni, R. Ramponi, and E. Diéguez, “Er3+ doped YAl3(BO3)4 single crystals: determination of the refractive indices,” Opt. Mater.26(3), 231–233 (2004).
[CrossRef]

Rams, J.

D. Jaque, J. Capmany, J. Rams, and J. G. Sole, “Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” Appl. Phys. (Berl.)87, 1042–1048 (2000).

Roch, J. F.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

Roos, M. B.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron.34(6), 1046–1053 (1998).
[CrossRef]

Schnabel, R.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A83(5), 052329 (2011).
[CrossRef]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express19(25), 25763–25772 (2011).
[CrossRef] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 .
[CrossRef] [PubMed]

Shy, J. T.

Sole, J. G.

D. Jaque, J. Capmany, J. Rams, and J. G. Sole, “Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” Appl. Phys. (Berl.)87, 1042–1048 (2000).

Song, F.

Sorbello, G.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photon. Technol. Lett.13(1), 19–21 (2001).
[CrossRef]

Steinlechner, S.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express19(25), 25763–25772 (2011).
[CrossRef] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 .
[CrossRef] [PubMed]

Svelto, C.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Svelto, O.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Sverchkov, S.

B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
[CrossRef]

Taccheo, S.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photon. Technol. Lett.13(1), 19–21 (2001).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Taguchi, N.

Tan, Q. G.

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er3+,Yb3+: YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett.89(24), 241111 (2006).
[CrossRef]

Teng, L.

Tian, J. G.

Tian, X. T.

J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3,” Appl. Phys. Lett.92(22), 221102 (2008).
[CrossRef]

Tolstik, N. A.

Tsunekane, M.

Vahlbruch, H.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express19(25), 25763–25772 (2011).
[CrossRef] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 .
[CrossRef] [PubMed]

Vallet, M.

van Leeuwen, R.

R. van Leeuwen, B. Xu, L. S. Watkins, Q. Wang, and C. Ghosh, “Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser,” Proc. SPIE6975, 69750K, 69750K-9 (2008).
[CrossRef]

Voronina, I.

B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
[CrossRef]

Wang, Q.

R. van Leeuwen, B. Xu, L. S. Watkins, Q. Wang, and C. Ghosh, “Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser,” Proc. SPIE6975, 69750K, 69750K-9 (2008).
[CrossRef]

Watkins, L. S.

R. van Leeuwen, B. Xu, L. S. Watkins, Q. Wang, and C. Ghosh, “Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser,” Proc. SPIE6975, 69750K, 69750K-9 (2008).
[CrossRef]

Weber, H. P.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron.34(6), 1046–1053 (1998).
[CrossRef]

Weber, R.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron.34(6), 1046–1053 (1998).
[CrossRef]

Werner, R. F.

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A83(5), 052329 (2011).
[CrossRef]

Wu, Z. H.

Xu, B.

R. van Leeuwen, B. Xu, L. S. Watkins, Q. Wang, and C. Ghosh, “Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser,” Proc. SPIE6975, 69750K, 69750K-9 (2008).
[CrossRef]

Yamamoto, Y.

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron.22(5), 617–624 (1986).
[CrossRef]

Zhang, K. S.

J. L. Liu, Q. Liu, H. Li, P. Li, and K. S. Zhang, “Low noise, continuous-wave single-frequency 1.5 μm laser generated by a singly resonant optical parametric oscillator,” Chin. Phys. B20(11), 114215 (2011).
[CrossRef]

J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3,” Appl. Phys. Lett.92(22), 221102 (2008).
[CrossRef]

Y. J. Li, P. Li, J. X. Feng, and K. S. Zhang, “Theoretical and experimental investigation of Er3+,Yb3+:YAl3(BO3)4 solid-state laser,” IEEE J. Quantum Electron.submitted.

Zhang, T. C.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

Zhang, X.

Appl. Opt.

Appl. Phys. (Berl.)

D. Jaque, J. Capmany, J. Rams, and J. G. Sole, “Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser,” Appl. Phys. (Berl.)87, 1042–1048 (2000).

Appl. Phys. B

B. Denker, B. Galagan, I. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J. E. Hellstrom, G. Karlsson, and F. Laurell, “Luminescent and laser properties of Yb–Er:GdCa4O(BO3)3: a new crystal for eye-safe 1.5-μm lasers,” Appl. Phys. B79(5), 577–581 (2004).
[CrossRef]

Appl. Phys. Lett.

J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3,” Appl. Phys. Lett.92(22), 221102 (2008).
[CrossRef]

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er3+,Yb3+: YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett.89(24), 241111 (2006).
[CrossRef]

Chin. Phys. B

J. L. Liu, Q. Liu, H. Li, P. Li, and K. S. Zhang, “Low noise, continuous-wave single-frequency 1.5 μm laser generated by a singly resonant optical parametric oscillator,” Chin. Phys. B20(11), 114215 (2011).
[CrossRef]

IEEE J. Quantum Electron.

Y. J. Li, P. Li, J. X. Feng, and K. S. Zhang, “Theoretical and experimental investigation of Er3+,Yb3+:YAl3(BO3)4 solid-state laser,” IEEE J. Quantum Electron.submitted.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode-pumped Nd:YAG rods,” IEEE J. Quantum Electron.34(6), 1046–1053 (1998).
[CrossRef]

S. Machida and Y. Yamamoto, “Quantum-limited operation of balanced mixer homodyne and heterodyne receivers,” IEEE J. Quantum Electron.22(5), 617–624 (1986).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and F. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 μm,” IEEE Photon. Technol. Lett.13(1), 19–21 (2001).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Opt. Mater.

R. Martínez Vázquez, R. Osellame, M. Marangoni, R. Ramponi, and E. Diéguez, “Er3+ doped YAl3(BO3)4 single crystals: determination of the refractive indices,” Opt. Mater.26(3), 231–233 (2004).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Phys. Rev. A

T. Eberle, V. Handchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A83(5), 052329 (2011).
[CrossRef]

Phys. Rev. Lett.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett.104(25), 251102 (2010), http://prl.aps.org/pdf/PRL/v104/i25/e251102 .
[CrossRef] [PubMed]

Proc. SPIE

R. van Leeuwen, B. Xu, L. S. Watkins, Q. Wang, and C. Ghosh, “Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser,” Proc. SPIE6975, 69750K, 69750K-9 (2008).
[CrossRef]

Quantum Semiclassic. Opt.

T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt.7(4), 601–613 (1995).
[CrossRef]

Rev. Mod. Phys.

S. L. Braunstein and P. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the Er,Yb:YAB laser. M1: input mirror; OC: output coupler; HWP: half wave plate; TEC: thermo-electric cooler; PBS: polarized beam splitter; PM: power meter; OI: optical isolator; F-P: Fabry-Perot interferometer; D1-D3: photodiode detectors; SA: spectrum analyzer.

Fig. 2
Fig. 2

Temperature distributions in the laser crystal under different cooling schemes.

Fig. 3
Fig. 3

Thermal focal length as a function of the incident pump power.

Fig. 4
Fig. 4

Output power of cw TEM00 1.55 μm laser as a function of the incident pump power for different cooling schemes.

Fig. 5
Fig. 5

Output power of cw single frequency 1.55 μm laser as a function of the incident pump power for different cooling schemes.

Fig. 6
Fig. 6

Transmitted intensity from F-P interferometer.

Fig. 7
Fig. 7

Power fluctuation of the cw single-frequency 1.55 μm laser.

Fig. 8
Fig. 8

Measured intensity and phase noise power of the cw single frequency Er,Yb:YAB laser at 1.55 μm as the function of the analysis frequency. The parameters of the spectrum analyzer: resolution bandwidth is 1 kHz, video bandwidth is 100 Hz, and sweep time is 1 s.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

q( r,z )= 2αξ P in π ω p 2 ( z ) e 2 r 2 / ω p 2 ( z ) e αz ,
f t = 2πκ ω pa 2 ξ P in ( 1 e αl ) 1 d n 0 dT +( n 0 1 )(1+ν) α T ,

Metrics